Advertisement

Task-specific prioritization of reward and effort information: Novel insights from behavior and computational modeling

  • Eliana VassenaEmail author
  • James Deraeve
  • William H. Alexander
Article

Abstract

Efficient integration of environmental information is critical in goal-directed behavior. Motivational information regarding potential rewards and costs (such as required effort) affects performance and decisions whether to engage in a task. While it is generally acknowledged that costs and benefits are integrated to determine the level of effort to be exerted, how this integration occurs remains an open question. Computational models of high-level cognition postulate serial processing of task-relevant features and demonstrate that prioritizing the processing of one feature over the other can affect performance. We investigated the hypothesis that motivationally relevant task features also may be processed serially, that people may prioritize either benefit or cost information, and that artificially controlling prioritization may be beneficial for performance (by improving task-accuracy) and decision-making (by boosting the willingness to engage in effortful trials). We manipulated prioritization by altering order of presentation of effort and reward cues in two experiments involving preparation for effortful performance and effort-based decision-making. We simulated the tasks with a recent model of prefrontal cortex (Alexander & Brown in Neural Computation, 27(11), 2354–2410, 2015). Human behavior was in line with model predictions: prioritizing reward vs. effort differentially affected performance vs. decision. Prioritizing reward was beneficial for performance, showing striking increase in accuracy, especially when a large reward was offered for a difficult task. Counterintuitively (yet predicted by the model), prioritizing reward resulted in a blunted reward effect on decisions. Conversely, prioritizing effort increased reward impact on decision to engage. These results highlight the importance of controlling prioritization of motivational cues in neuroimaging studies.

Keywords

Effort Reward Prioritization Decision-making Task-performance Computational modeling Motivation 

Notes

Acknowledgments

E.V. was supported by the Marie Sklodowska-Curie action, with a standard IF-EF fellowship, within the H2020 framework (H2020-MSCA-IF2015, Grant number 705630). W.H.A. was supported by FWO-Flanders Odysseus II Award #G.OC44.13N.

Authors contributions

E.V., J.D., and W.H.A. formulated the research question, designed the experiments, discussed the results, and wrote the manuscript. E.V. and W.H.A. analyzed the data. W.H.A conducted and analyzed model simulations. E.V. collected the data.

Compliance with ethical standards

Competing financial interests

The authors have no conflicting interests to declare.

References

  1. Aarts, E., & Roelofs, A. (2010). Attentional control in anterior cingulate cortex based on probabilistic cueing. Journal of Cognitive Neuroscience, 23(3), 716–727.  https://doi.org/10.1162/jocn.2010.21435 Google Scholar
  2. Alexander, W. H., & Brown, J. W. (2015). Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27(11), 2354–2410.  https://doi.org/10.1162/NECO_a_00779 Google Scholar
  3. Alexander, W. H., & Brown, J. W. (2018). Frontal cortex function as derived from hierarchical predictive coding. Scientific Reports, 8(1), 3843.  https://doi.org/10.1038/s41598-018-21407-9 Google Scholar
  4. Alexander, W. H., Vassena, E., Deraeve, J., & Langford, Z. D. (2017). Integrative modeling of pFC. Journal of Cognitive Neuroscience, 1–10.  https://doi.org/10.1162/jocn_a_01138
  5. Apps, M. A. J., Grima, L. L., Manohar, S., & Husain, M. (2015). The role of cognitive effort in subjective reward devaluation and risky decision-making. Scientific Reports, 5, 16880.  https://doi.org/10.1038/srep16880 Google Scholar
  6. Apps, M. A. J., & Ramnani, N. (2014). The anterior cingulate gyrus signals the net value of others’ rewards. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(18), 6190–6200.  https://doi.org/10.1523/JNEUROSCI.2701-13.2014 Google Scholar
  7. Badre, D. (2008). Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5), 193–200.Google Scholar
  8. Badre, D., & D’Esposito, M. (2007). Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19(12), 2082–2099.  https://doi.org/10.1162/jocn.2007.19.12.2082 Google Scholar
  9. Badre, D., Kayser, A. S., & D’Esposito, M. (2010). Frontal cortex and the discovery of abstract action rules. Neuron, 66(2), 315–326.  https://doi.org/10.1016/j.neuron.2010.03.025 Google Scholar
  10. Barch, D. M., Treadway, M. T., & Schoen, N. (2014). Effort, anhedonia, and function in schizophrenia: Reduced effort allocation predicts amotivation and functional impairment. Journal of Abnormal Psychology, 123(2), 387–397.  https://doi.org/10.1037/a0036299 Google Scholar
  11. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. ArXiv Preprint ArXiv:1406.5823. Retrieved from http://arxiv.org/abs/1406.5823
  12. Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S. (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10(9), 1214–1221.  https://doi.org/10.1038/nn1954 Google Scholar
  13. Boehler, C. N., Hopf, J.-M., Stoppel, C. M., & Krebs, R. M. (2012). Motivating inhibition – Reward prospect speeds up response cancellation. Cognition, 125(3), 498–503.  https://doi.org/10.1016/j.cognition.2012.07.018 Google Scholar
  14. Boehler, C. N., Schevernels, H., Hopf, J.-M., Stoppel, C. M., & Krebs, R. M. (2014). Reward prospect rapidly speeds up response inhibition via reactive control. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 593–609.  https://doi.org/10.3758/s13415-014-0251-5 Google Scholar
  15. Botvinick, M. M., Huffstetler, S., & McGuire, J. T. (2009). Effort discounting in human nucleus accumbens. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 16–27.  https://doi.org/10.3758/CABN.9.1.16 Google Scholar
  16. Botvinick, Matthew M. (2008). Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences, 12(5), 201–208.  https://doi.org/10.1016/j.tics.2008.02.009 Google Scholar
  17. Botvinick, Matthew M., & Rosen, Z. B. (2009). Anticipation of cognitive demand during decision-making. Psychological Research, 73(6), 835–842.  https://doi.org/10.1007/s00426-008-0197-8 Google Scholar
  18. Braem, S. (2017). Conditioning task switching behavior. Cognition, 166, 272–276.  https://doi.org/10.1016/j.cognition.2017.05.037 Google Scholar
  19. Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113.  https://doi.org/10.1016/j.tics.2011.12.010 Google Scholar
  20. Brown, J. W., & Braver, T. S. (2007). Risk prediction and aversion by anterior cingulate cortex. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 266–277.  https://doi.org/10.3758/CABN.7.4.266 Google Scholar
  21. Brown, Joshua W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science (New York, N.Y.), 307(5712), 1118–1121.  https://doi.org/10.1126/science.1105783 Google Scholar
  22. Bugg, J. M., & Smallwood, A. (2016). The next trial will be conflicting! Effects of explicit congruency pre-cues on cognitive control. Psychological Research, 80(1), 16–33.  https://doi.org/10.1007/s00426-014-0638-5 Google Scholar
  23. Busemeyer, J. R., Wang, Z., & Townsend, J. T. (2006). Quantum dynamics of human decision-making. Journal of Mathematical Psychology, 50(3), 220–241.  https://doi.org/10.1016/j.jmp.2006.01.003 Google Scholar
  24. Chiew, K. S., & Braver, T. S. (2016). Reward favors the prepared: Incentive and task-informative cues interact to enhance attentional control. Journal of Experimental Psychology: Human Perception and Performance, 42(1), 52–66.  https://doi.org/10.1037/xhp0000129 Google Scholar
  25. Chong, T. T.-J., Apps, M., Giehl, K., Sillence, A., Grima, L. L., & Husain, M. (2017). Neurocomputational mechanisms underlying subjective valuation of effort costs. PLoS Biology, 15(2), e1002598.  https://doi.org/10.1371/journal.pbio.1002598 Google Scholar
  26. Collins, Anne G. E., & Frank, M. J. (2012). How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. The European Journal of Neuroscience, 35(7), 1024–1035.  https://doi.org/10.1111/j.1460-9568.2011.07980.x Google Scholar
  27. Collins, Anne Gabrielle Eva, & Frank, M. J. (2016). Neural signature of hierarchically structured expectations predicts clustering and transfer of rule sets in reinforcement learning. Cognition, 152, 160–169.  https://doi.org/10.1016/j.cognition.2016.04.002 Google Scholar
  28. Croxson, P. L., Walton, M. E., O’Reilly, J. X., Behrens, T. E., & Rushworth, M. F. (2009). Effort-based cost-benefit valuation and the human brain. Journal of Neuroscience, 29(14), 4531–4541.  https://doi.org/10.1523/JNEUROSCI.4515-08.2009 Google Scholar
  29. Culbreth, A., Westbrook, A., & Barch, D. (2016). Negative symptoms are associated with an increased subjective cost of cognitive effort. Journal of Abnormal Psychology, 125(4), 528–536.  https://doi.org/10.1037/abn0000153 Google Scholar
  30. De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. J. (2006). Frames, biases, and rational decision-making in the human brain. Science, 313(5787), 684–687.Google Scholar
  31. Furnham, A., & Boo, H. C. (2011). A literature review of the anchoring effect. The Journal of Socio-Economics, 40(1), 35–42.Google Scholar
  32. Gendolla, G. H., & Krüsken, J. (2001). The joint impact of mood state and task difficulty on cardiovascular and electrodermal reactivity in active coping. Psychophysiology, 38(3), 548–556.Google Scholar
  33. Gendolla, G. H. E. (2012). Implicit affect primes effort: A theory and research on cardiovascular response. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 86(2), 123–135.  https://doi.org/10.1016/j.ijpsycho.2012.05.003 Google Scholar
  34. Gheza, D., De Raedt, R., Baeken, C., & Pourtois, G. (2018). Integration of reward with cost anticipation during performance monitoring revealed by ERPs and EEG spectral perturbations. NeuroImage, 173, 153–164.  https://doi.org/10.1016/j.neuroimage.2018.02.049 Google Scholar
  35. Gläscher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010). States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 66(4), 585–595.  https://doi.org/10.1016/j.neuron.2010.04.016 Google Scholar
  36. Gonzalez, C., Dana, J., Koshino, H., & Just, M. (2005). The framing effect and risky decisions: Examining cognitive functions with fMRI. Journal of Economic Psychology, 26(1), 1–20.  https://doi.org/10.1016/j.joep.2004.08.004 Google Scholar
  37. Hershenberg, R., Satterthwaite, T. D., Daldal, A., Katchmar, N., Moore, T. M., Kable, J. W., & Wolf, D. H. (2016). Diminished effort on a progressive ratio task in both unipolar and bipolar depression. Journal of Affective Disorders, 196, 97–100.  https://doi.org/10.1016/j.jad.2016.02.003 Google Scholar
  38. Jacowitz, K. E., & Kahneman, D. (1995). Measures of anchoring in estimation tasks. Personality and Social Psychology Bulletin, 21, 1161–1166.Google Scholar
  39. Janssens, C., De Loof, E., Pourtois, G., & Verguts, T. (2016). The time course of cognitive control implementation. Psychonomic Bulletin & Review  https://doi.org/10.3758/s13423-015-0992-3
  40. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 263–291.Google Scholar
  41. Kirby, K. N., & Maraković, N. N. (1996). Delay-discounting probabilistic rewards: Rates decrease as amounts increase. Psychonomic Bulletin & Review, 3(1), 100–104.Google Scholar
  42. Kivetz, R. (2003). The effects of effort and intrinsic motivation on risky choice. Marketing Science, 22(4), 477–502.Google Scholar
  43. Koechlin, E. (2014). An evolutionary computational theory of prefrontal executive function in decision-making. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1655).  https://doi.org/10.1098/rstb.2013.0474
  44. Koechlin, E., Basso, G., Pietrini, P., Panzer, S., & Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399(6732), 148–151.  https://doi.org/10.1038/20178 Google Scholar
  45. Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302(5648), 1181–1185.  https://doi.org/10.1126/science.1088545 Google Scholar
  46. Kolling, N., Behrens, T. E. J., Mars, R. B., & Rushworth, M. F. S. (2012). Neural mechanisms of foraging. Science (New York, N.Y.), 336(6077), 95–98.  https://doi.org/10.1126/science.1216930 Google Scholar
  47. Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology. General, 139(4), 665–682.  https://doi.org/10.1037/a0020198 Google Scholar
  48. Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the Integration of reward prospect and attentional task demands. Cerebral Cortex (New York, NY), 22(3), 607–615.  https://doi.org/10.1093/cercor/bhr134 Google Scholar
  49. Krebs, R. M., Boehler, C. N., & Woldorff, M. G. (2010). The influence of reward associations on conflict processing in the Stroop task. Cognition, 117(3), 341–347.  https://doi.org/10.1016/j.cognition.2010.08.018 Google Scholar
  50. Kühberger, A. (1998). The influence of framing on risky decisions: A meta-analysis. Organizational Behavior and Human Decision Processes, 75(1), 23–55.  https://doi.org/10.1006/obhd.1998.2781 Google Scholar
  51. Kühberger, A., Schulte-Mecklenbeck, M., & Perner, J. (1999). The effects of framing, reflection, probability, and payoff on risk preference in choice tasks. Organizational Behavior and Human Decision Processes, 78(3), 204–231.  https://doi.org/10.1006/obhd.1999.2830 Google Scholar
  52. Kurniawan, I. T., Guitart-Masip, M., Dayan, P., & Dolan, R. J. (2013). Effort and valuation in the brain: The effects of anticipation and execution. Journal of Neuroscience, 33(14), 6160–6169.  https://doi.org/10.1523/JNEUROSCI.4777-12.2013 Google Scholar
  53. Lee, S. W., Shimojo, S., & O’Doherty, J. P. (2014). Neural computations underlying arbitration between model-based and model-free learning. Neuron, 81(3), 687–699.  https://doi.org/10.1016/j.neuron.2013.11.028 Google Scholar
  54. Locke, H. S., & Braver, T. S. (2008). Motivational influences on cognitive control: Behavior, brain activation, and individual differences. Cognitive, Affective, & Behavioral Neuroscience, 8(1), 99–112.  https://doi.org/10.3758/CABN.8.1.99 Google Scholar
  55. Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6), 317–322.  https://doi.org/10.1016/j.tins.2006.04.001 Google Scholar
  56. McCarthy, J. M., Treadway, M. T., Bennett, M. E., & Blanchard, J. J. (2016). Inefficient effort allocation and negative symptoms in individuals with schizophrenia. Schizophrenia Research, 170(2–3), 278–284.  https://doi.org/10.1016/j.schres.2015.12.017 Google Scholar
  57. McGuire, J. T., & Botvinick, M. M. (2010). Prefrontal cortex, cognitive control, and the registration of decision costs. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7922–7926.  https://doi.org/10.1073/pnas.0910662107 Google Scholar
  58. Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–142.  https://doi.org/10.1111/j.2041-210x.2012.00261.x Google Scholar
  59. O’Doherty, J. P. (2014). The problem with value. Neuroscience and Biobehavioral Reviews, 43, 259–268.  https://doi.org/10.1016/j.neubiorev.2014.03.027 Google Scholar
  60. Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews. Neuroscience, 9(7), 545–556.  https://doi.org/10.1038/nrn2357 Google Scholar
  61. Rangel, A., & Hare, T. (2010). Neural computations associated with goal-directed choice. Current Opinion in Neurobiology, 20(2), 262–270.  https://doi.org/10.1016/j.conb.2010.03.001 Google Scholar
  62. Reynolds, B. (2006). A review of delay-discounting research with humans: relations to drug use and gambling. Behavioural Pharmacology, 17(8), 651–667.Google Scholar
  63. Robles, E., Vargas, P. A., & Bejarano, R. (2009). Within-subject differences in degree of delay discounting as a function of order of presentation of hypothetical cash rewards. Behavioural Processes, 81(2), 260–263.  https://doi.org/10.1016/j.beproc.2009.02.018 Google Scholar
  64. Rosell-Negre, P., Bustamante, J. C., Fuentes-Claramonte, P., Costumero, V., Benabarre, S., & Barros-Loscertales, A. (2014). Reward anticipation enhances brain activation during response inhibition. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 621–634.  https://doi.org/10.3758/s13415-014-0292-9 Google Scholar
  65. Rushworth, M. F. S., & Behrens, T. E. J. (2008). Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neuroscience, 11(4), 389–397.  https://doi.org/10.1038/nn2066 Google Scholar
  66. Rushworth, Matthew F. S., Kolling, N., Sallet, J., & Mars, R. B. (2012). Valuation and decision-making in frontal cortex: One or many serial or parallel systems? Current Opinion in Neurobiology, 22(6), 946–955.  https://doi.org/10.1016/j.conb.2012.04.011 Google Scholar
  67. Schevernels, H., Krebs, R. M., Santens, P., Woldorff, M. G., & Boehler, C. N. (2014). Task preparation processes related to reward prediction precede those related to task-difficulty expectation. NeuroImage, 84.  https://doi.org/10.1016/j.neuroimage.2013.09.039
  68. Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of Anterior Cingulate Cortex function. Neuron, 79(2), 217–240.  https://doi.org/10.1016/j.neuron.2013.07.007 Google Scholar
  69. Silvestrini, N., & Gendolla, G. H. E. (2009). The joint effect of mood, task valence, and task difficulty on effort-related cardiovascular response and facial EMG. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 73(3), 226–234.  https://doi.org/10.1016/j.ijpsycho.2009.03.004 Google Scholar
  70. Silvetti, M., Vassena, E., Abrahamse, E., & Verguts, T. (2018). Dorsal anterior cingulate-brainstem ensemble as a reinforcement meta-learner. PLoS Computational Biology, 14(8), e1006370.  https://doi.org/10.1371/journal.pcbi.1006370 Google Scholar
  71. Silvia, P. J., Mironovová, Z., McHone, A. N., Sperry, S. H., Harper, K. L., Kwapil, T. R., & Eddington, K. M. (2016). Do depressive symptoms “blunt” effort? An analysis of cardiac engagement and withdrawal for an increasingly difficult task. Biological Psychology.  https://doi.org/10.1016/j.biopsycho.2016.04.068
  72. Sohn, M.-H., Albert, M. V., Jung, K., Carter, C. S., & Anderson, J. R. (2007). Anticipation of conflict monitoring in the anterior cingulate cortex and the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(25), 10330–10334.  https://doi.org/10.1073/pnas.0703225104 Google Scholar
  73. Strack, F., & Mussweiler, T. (1997). Explaining the enigmatic anchoring effect: Mechanisms of selective accessibility. Journal of Personality and Social Psychology, 73(3), 437.Google Scholar
  74. Treadway, M. T., Bossaller, N. A., Shelton, R. C., & Zald, D. H. (2012). Effort-based decision-making in major depressive disorder: A translational model of motivational anhedonia. Journal of Abnormal Psychology, 121(3), 553–558.  https://doi.org/10.1037/a0028813 Google Scholar
  75. van den Berg, B., Krebs, R. M., Lorist, M. M., & Woldorff, M. G. (2014). Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 561–577.  https://doi.org/10.3758/s13415-014-0281-z Google Scholar
  76. Varazzani, C., San-Galli, A., Gilardeau, S., & Bouret, S. (2015). Noradrenaline and dopamine neurons in the reward/effort trade-off: A direct electrophysiological comparison in behaving monkeys. The Journal of Neuroscience, 35(20), 7866–7877.  https://doi.org/10.1523/JNEUROSCI.0454-15.2015 Google Scholar
  77. Vassena, E., Cobbaert, S., Andres, M., Fias, W., & Verguts, T. (2015). Unsigned value prediction-error modulates the motor system in absence of choice. NeuroImage, 122, 73–79.  https://doi.org/10.1016/j.neuroimage.2015.07.081 Google Scholar
  78. Vassena, E., Deraeve, J., & Alexander, W. H. (2017). Predicting motivation: Computational models of PFC can explain neural coding of motivation and effort-based decision-making in health and disease. Journal of Cognitive Neuroscience Google Scholar
  79. Vassena, E., Gerrits, R., Demanet, J., Verguts, T., & Siugzdaite, R. (2018). Anticipation of a mentally effortful task recruits dorsolateral prefrontal cortex: An fNIRS validation study. Neuropsychologia.  https://doi.org/10.1016/j.neuropsychologia.2018.04.033
  80. Vassena, E., Holroyd, C. B., & Alexander, W. H. (2017). Computational models of anterior cingulate cortex: At the crossroads between prediction and effort. Frontiers in Neuroscience, 11.  https://doi.org/10.3389/fnins.2017.00316
  81. Vassena, E., Silvetti, M., Boehler, C. N., Achten, E., Fias, W., & Verguts, T. (2014). Overlapping neural systems represent cognitive effort and reward anticipation. PLoS ONE, 9(3), e91008.  https://doi.org/10.1371/journal.pone.0091008 Google Scholar
  82. Verguts, T., Vassena, E., & Silvetti, M. (2015). Adaptive effort investment in cognitive and physical tasks: A neurocomputational model. Frontiers in Behavioral Neuroscience, 9.  https://doi.org/10.3389/fnbeh.2015.00057
  83. Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic approach. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 395–415.  https://doi.org/10.3758/s13415-015-0334-y Google Scholar
  84. Xu, R. (2003). Measuring explained variation in linear mixed effects models. Statistics in Medicine, 22(22), 3527–3541.  https://doi.org/10.1002/sim.1572 Google Scholar
  85. Yang, X.-H., Huang, J., Zhu, C.-Y., Wang, Y.-F., Cheung, E. F. C., Chan, R. C. K., & Xie, G.-R. (2014). Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Research, 220(3), 874–882.  https://doi.org/10.1016/j.psychres.2014.08.056 Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Experimental PsychologyGhent UniversityGhentBelgium
  3. 3.Center for Complex Systems and Brain SciencesFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations