Advertisement

Differential impact of ventromedial prefrontal cortex damage on “hot” and “cold” decisions under risk

  • Julia Spaniol
  • Francesco Di Muro
  • Elisa Ciaramelli
Article

Abstract

The ventromedial prefrontal cortex (vmPFC) is known to play a key role in reward processing and decision making. However, its relative contribution to affect-rich (“hot”) and affect-poor (“cold”) decisions is not fully understood. Damage to vmPFC is associated with impaired performance on laboratory tasks of decision making under ambiguity and risk. In the current study, we tested the hypothesis that vmPFC is critical for adaptive risk taking under “hot” conditions specifically. Participants included patients with focal lesions in vmPFC, patient controls with damage in regions not including vmPFC, and healthy controls. They completed hot and cold versions of a dynamic risk-taking task, the Columbia Card Task (CCT). Relative to healthy controls and patient controls, vmPFC patients showed a strong overall increase in risk taking in the hot version of the CCT, despite preserved sensitivity to trial-level variation in risk. In the cold version, overall risk taking was similar among all three groups, even though vmPFC patients showed reduced sensitivity to trial-level variation in risk. Sensitivity to gain and loss magnitudes did not differ significantly among the groups, in either the hot or the cold CCT. These findings lend novel support to the hypothesis that the vmPFC is critical for adaptive decision making under affect-rich conditions.

Keywords

Affect Columbia Card Task Decision making Motivation Reward Risk taking 

Notes

Author Note

We are grateful to acknowledge Davide Braghittoni for his help with patient recruitment, and Carson Pun for his assistance with computer programming.

Supplementary material

13415_2018_680_MOESM1_ESM.docx (305 kb)
ESM 1 (DOCX 305 kb)

References

  1. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.  https://doi.org/10.1016/0010-0277(94)90018-3 CrossRefGoogle Scholar
  2. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.  https://doi.org/10.1126/science.275.5304.1293 CrossRefGoogle Scholar
  3. Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6, 215–225.  https://doi.org/10.1093/cercor/6.2.215 CrossRefGoogle Scholar
  4. Benoit, R. G., & Schacter, D. L. (2015). Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia, 75, 450-457.  https://doi.org/10.1016/j.neuropsychologia.2015.06.034.CrossRefGoogle Scholar
  5. Bertossi, E., Aleo, F., Braghittoni, D., & Ciaramelli, E. (2016). Stuck in the here and now: Construction of fictitious and future experiences following ventromedial prefrontal damage. Neuropsychologia, 81: 107-116.CrossRefGoogle Scholar
  6. Bertossi, E., & Ciaramelli, E. (2016). Ventromedial prefrontal damage reduces mind-wandering and biases its temporal focus. Social Cognitive and Affective Neuroscience, 11, 1783–1791.  https://doi.org/10.1093/scan/nsw099 CrossRefGoogle Scholar
  7. Bertossi, E., Tesini, C., Cappelli, A., & Ciaramelli, E. (2016). Ventromedial prefrontal damage causes a pervasive impairment of episodic memory and future thinking. Neuropsychologia, 90, 12–24.  https://doi.org/10.1016/j.neuropsychologia.2016.01.034 CrossRefGoogle Scholar
  8. Clark, L., Bechara, A., Damasio, H., Aitken, M. R. F., Sahakian, B. J., & Robbins, T. W. (2008). Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain, 131, 1311–1322.  https://doi.org/10.1093/brain/awn066 CrossRefGoogle Scholar
  9. D’Argembeau, A. (2013). On the role of the ventromedial prefrontal cortex in self-processing: The valuation hypothesis. Frontiers in Human Neuroscience, 7.  https://doi.org/10.3389/fnhum.2013.00372
  10. Fellows, L. K. (2011). Orbitofrontal contributions to value-based decision making: Evidence from humans with frontal lobe damage. Annals of the New York Academy of Sciences, 1239, 51–58.  https://doi.org/10.1111/j.1749-6632.2011.06229.x CrossRefGoogle Scholar
  11. Fellows, L. K., & Farah, M. J. (2005). Dissociable elements of human foresight: A role for the ventromedial frontal lobes in framing the future, but not in discounting future rewards. Neuropsychologia, 43, 1214-1221.  https://doi.org/10.1016/j.neuropsychologia.2004.07.018 CrossRefGoogle Scholar
  12. Figner, B., Mackinlay, R. J., Wilkening, F., & Weber, E. U. (2009). Affective and deliberative processes in risky choice: Age differences in risk taking in the Columbia Card Task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 709–730.  https://doi.org/10.1037/a0014983 Google Scholar
  13. Figner, B., & Weber, E. U. (2011). Who takes risks when and why? Current Directions in Psychological Science, 20, 211–216.  https://doi.org/10.1177/0963721411415790 CrossRefGoogle Scholar
  14. Folstein, M. F., Folstein, S. E., McHugh, P. R., Roth, M., Shapiro, M. B., Post, F., … Kiloh, L. G. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.  https://doi.org/10.1016/0022-3956(75)90026-6
  15. Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324, 646–648.  https://doi.org/10.1126/science.1168450 CrossRefGoogle Scholar
  16. Henri-Bhargava, A., Simioni, A., & Fellows, L. K. (2012). Ventromedial frontal lobe damage disrupts the accuracy, but not the speed, of value-based preference judgments. Neuropsychologia, 50, 1536–1542.  https://doi.org/10.1016/j.neuropsychologia.2012.03.006 CrossRefGoogle Scholar
  17. Holper, L., & Murphy, R. O. (2014). Hemodynamic and affective correlates assessed during performance on the Columbia Card Task (CCT). Brain Imaging and Behavior, 8, 517-530.  https://doi.org/10.1007/s11682-013-9265-9 CrossRefGoogle Scholar
  18. Juechems, K., Balaguer, J., Ruz, M., & Summerfield, C. (2017). Ventromedial prefrontal cortex encodes a latent estimate of cumulative reward. Neuron, 93, 705–714.e4.  https://doi.org/10.1016/j.neuron.2016.12.038 CrossRefGoogle Scholar
  19. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292.  https://doi.org/10.2307/1914185 CrossRefGoogle Scholar
  20. Kahnt, T., Heinzle, J., Park, S. Q., & Haynes, J. D. (2011). Decoding different roles for vmPFC and dlPFC in multi-attribute decision making. Neuroimage, 56, 709-715.  https://doi.org/10.1016/j.neuroimage.2010.05.058 CrossRefGoogle Scholar
  21. Levy, D. J., & Glimcher, P. W. (2012). The root of all value: A neural common currency for choice. Current Opinion in Neurobiology.  https://doi.org/10.1016/j.conb.2012.06.001
  22. Lim, S. L., O’Doherty, J. P., & Rangel, A. (2013). Stimulus value signals in ventromedial PFC reflect the integration of attribute value signals computed in fusiform gyrus and posterior superior temporal gyrus. Journal of Neuroscience, 33, 8729-8741.  https://doi.org/10.1523/JNEUROSCI.4809-12.2013 CrossRefGoogle Scholar
  23. Metereau, E., & Dreher, J. C. (2015). The medial orbitofrontal cortex encodes a general unsigned value signal during anticipation of both appetitive and aversive events. Cortex, 63, 42–54.  https://doi.org/10.1016/j.cortex.2014.08.012 CrossRefGoogle Scholar
  24. Myers-Schulz, B., & Koenigs, M. (2012). Functional anatomy of ventromedial prefrontal cortex: Implications for mood and anxiety disorders. Molecular Psychiatry, 17, 132-141.  https://doi.org/10.1038/mp.2011.88 CrossRefGoogle Scholar
  25. O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.  https://doi.org/10.1038/82959 CrossRefGoogle Scholar
  26. Padoa-Schioppa, C., & Cai, X. (2011). The orbitofrontal cortex and the computation of subjective value: Consolidated concepts and new perspectives. Annals of the New York Academy of Sciences, 1239, 130-137.  https://doi.org/10.1111/j.1749-6632.2011.06262.x CrossRefGoogle Scholar
  27. Panno, A., Lauriola, M., & Figner, B. (2013). Emotion regulation and risk taking: Predicting risky choice in deliberative decision making. Cognition and Emotion, 27, 326–334.  https://doi.org/10.1080/02699931.2012.707642 CrossRefGoogle Scholar
  28. Paulus, M. P. (2007). Decision-making dysfunctions in psychiatry - Altered homeostatic processing? Science, 318, 602-606. doi:  https://doi.org/10.1126/science.1142997 CrossRefGoogle Scholar
  29. Peters, J., & D’Esposito, M. (2016) Effects of Medial Orbitofrontal Cortex Lesions on Self-Control in Intertemporal Choice. Current Biology 26 (19):2625–2628Google Scholar
  30. Pujara, M. S., Wolf, R. C., Baskaya, M. K., & Koenigs, M. (2015). Ventromedial prefrontal cortex damage alters relative risk tolerance for prospective gains and losses. Neuropsychologia, 79, 70–75. doi:  https://doi.org/10.1016/j.neuropsychologia.2015.10.026 CrossRefGoogle Scholar
  31. Rangel, A., Camerer, C., & Montague, P. R. (2008). Neuroeconomics: The neurobiology of value-based decision-making. Nature Reviews Neuroscience, 9, 545–556. doi:  https://doi.org/10.1038/nrn2357 CrossRefGoogle Scholar
  32. Reber, J., Feinstein, J. S., O’Doherty, J. P., Liljeholm, M., Adolphs, R., & Tranel, D. (2017). Selective impairment of goal-directed decision-making following lesions to the human ventromedial prefrontal cortex. Brain, 140, 1743-1756. doi:  https://doi.org/10.1093/brain/awx105 CrossRefGoogle Scholar
  33. Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12, 191–200.  https://doi.org/10.1155/2000/421719 CrossRefGoogle Scholar
  34. Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 16, 147-156.  https://doi.org/10.1016/j.tics.2012.01.005 CrossRefGoogle Scholar
  35. Sellitto, M., Ciaramelli, E., & di Pellegrino, G. (2010). Myopic discounting of future rewards after medial orbitofrontal damage in humans. Journal of Neuroscience, 30, 16429–16436.  https://doi.org/10.1523/jneurosci.2516-10.2010 CrossRefGoogle Scholar
  36. Spinnler, H., & Tognoni, G. (1987). Standardizzazione e taratura italiana di test neuropsicologici. The Italian Journal of Neurological Science, 6, 1–120.Google Scholar
  37. Studer, B., & Clark, L. (2011). Place your bets: Psychophysiological correlates of decision-making under risk. Cognitive, Affective, & Behavioral Neuroscience, 11, 144–158.  https://doi.org/10.3758/s13415-011-0025-2 CrossRefGoogle Scholar
  38. Studer, B., Manes, F., Humphreys, G., Robbins, T. W., & Clark, L. (2015). Risk-sensitive decision-making in patients with posterior parietal and ventromedial prefrontal cortex injury. Cerebral Cortex, 25, 1–9.  https://doi.org/10.1093/cercor/bht197 CrossRefGoogle Scholar
  39. Terracciano, A., McCrae, R. R., & Costa, P. T. (2003). Factorial and construct validity of the Italian Positive and Negative Affect Schedule (PANAS). European Journal of Psychological Assessment, 19, 131–141.  https://doi.org/10.1027//1015-5759.19.2.131 CrossRefGoogle Scholar
  40. Vaidya, A. R., & Fellows, L. K. (2015). Testing necessary regional frontal contributions to value assessment and fixation-based updating. Nature Communications, 6, 10120.CrossRefGoogle Scholar
  41. Vaidya, A. R., Sefranek, M., & Fellows, L. K. (2017). Ventromedial frontal lobe damage alters how specific attributes are weighed in subjective valuation. Cerebral Cortex. Advance online publication.  https://doi.org/10.1093/cercor/bhx246
  42. Watson, D., Clark, L. a., & Tellegen, A. (1988). Positive and negative affect schedule (PANAS). Journal of Personality and Social Psychology, 54, 1063–1070.  https://doi.org/10.1037/t03592-000 CrossRefGoogle Scholar
  43. Weller, J. A., Dieckmann, N. F., Tusler, M., Mertz, C. K., Burns, W. J., & Peters, E. (2013). Development and testing of an abbreviated numeracy scale: A Rasch Analysis Approach. Journal of Behavioral Decision Making, 26, 198–212.  https://doi.org/10.1002/bdm.1751 CrossRefGoogle Scholar
  44. Weller, J. A., Levin, I. P., Shiv, B., & Bechara, A. (2007). Neural correlates of adaptive decision making for risky gains and losses. Psychological Science, 18, 958–964.  https://doi.org/10.1111/j.1467-9280.2007.02009.x CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Julia Spaniol
    • 1
  • Francesco Di Muro
    • 2
  • Elisa Ciaramelli
    • 2
  1. 1.Department of PsychologyRyerson UniversityTorontoCanada
  2. 2.Dipartimento di PsicologiaUniversità di BolognaBolognaItaly

Personalised recommendations