Advertisement

No matter how: Top-down effects of verbal and semantic category knowledge on early visual perception

  • Martin MaierEmail author
  • Rasha Abdel Rahman
Article

Abstract

Language is assumed to augment human cognition. But can language also affect basic mechanisms of perception, suggesting cognitive penetrability of perception? This idea is highly controversial: linguistic categorization may induce top-down effects on ongoing perceptual processing. Alternatively, such effects may not concern perception proper, but pre-perceptual shifts of attention or downstream processes, such as perceptual judgment. This study provides a critical test of these views by investigating categorical perception (CP) of novel objects in a balanced learning design, controlling for perceptual experience and low-level visual differences. To better understand which linguistic representations induce CP, we manipulated the type of information categories were based on: bare verbal labels, in-depth semantic knowledge, or the combined information from labels associated with semantic knowledge. We used event-related brain potentials (ERPs) derived from the EEG in a visual search task to localize CP effects at perceptual or pre/post-perceptual stages. The results replicated behavioral CP with facilitated visual search when target and distractors belonged to different linguistic categories. ERPs revealed CP effects in the P1 and N1 components, associated with early visual processing. Attentional selection, reflected in the N2, also was influenced by linguistic categories. The N2 and the N400, a measure of high-level semantic processing, were sensitive to the depth of semantic knowledge associated with objects. CP, however, did not differ between category types, suggesting that any linguistic categorization can lead to CP. The findings support cognitive penetrability of perception, with linguistic categories informing perceptual predictions down to the processing of low-level visual features.

Keywords

Categorical perception Semantic knowledge Event-related potentials Linguistic relativity Top-down effects 

Notes

Acknowledgements

This work was supported by a grant from the German Research Foundation (grant number AB 277- 6) to Rasha Abdel Rahman. Martin Maier was supported by scholarships granted by the State of Berlin and the Berlin School of Mind and Brain. The authors thank Julia Baum and Hannah Klouth for their help with data collection and Guido Kiecker for technical advice and task programming.

Authors’ contributions

Both authors developed the study design, discussed the results, and wrote the manuscript. M.M. collected and analyzed data.

Supplementary material

13415_2018_679_MOESM1_ESM.pdf (674 kb)
ESM 1 (PDF 674 kb)

References

  1. Abdel Rahman, R., & Sommer, W. (2008). Seeing what we know and understand: How knowledge shapes perception. Psychonomic Bulletin & Review, 15(6), 1055-1063. doi: https://doi.org/10.3758/Pbr.15.6.1055 Google Scholar
  2. Athanasopoulos, P., Dering, B., Wiggett, A., Kuipers, J.-R., & Thierry, G. (2010). Perceptual shift in bilingualism: Brain potentials reveal plasticity in pre-attentive colour perception. Cognition, 116(3), 437-443. doi: https://doi.org/10.1016/j.cognition.2010.05.016 PubMedGoogle Scholar
  3. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral & Brain Sciences, 22, 577–660.Google Scholar
  4. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. doi: https://doi.org/10.18637/jss.v067.i01 Google Scholar
  5. Bhalla, M., & Proffitt, D. R. (1999). Visual–motor recalibration in geographical slant perception. Journal of Experimental Psychology: Human Perception and Performance, 25(4), 1076-1096.PubMedGoogle Scholar
  6. Boutonnet, B., Dering, B., Vinas-Guasch, N., & Thierry, G. (2013). Seeing Objects through the Language Glass. Journal of Cognitive Neuroscience, 25(10), 1702-1710. doi: https://doi.org/10.1162/Jocn_a_00415 PubMedGoogle Scholar
  7. Boutonnet, B., & Lupyan, G. (2015). Words Jump-Start Vision: A Label Advantage in Object Recognition. Journal of Neuroscience, 35(25), 9329-9335. doi: https://doi.org/10.1523/jneurosci.5111-14.2015 PubMedGoogle Scholar
  8. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181-204. doi: https://doi.org/10.1017/S0140525x12000477 PubMedGoogle Scholar
  9. Clark, V. P., Fan, S., & Hillyard, S. A. (1994). Identification of early visual evoked potential generators by retinotopic and topographic analyses. Human Brain Mapping, 2(3), 170-187. doi: https://doi.org/10.1002/hbm.460020306 Google Scholar
  10. Constable, M. D., & Becker, S. I. (2017). Right away: A late, right-lateralized category effect complements an early, left-lateralized category effect in visual search. Psychonomic Bulletin & Review, 24(5), 1611-1619. doi: https://doi.org/10.3758/s13423-017-1246-3 Google Scholar
  11. Çukur, T., Nishimoto, S., Huth, A. G., & Gallant, J. L. (2013). Attention during natural vision warps semantic representation across the human brain. Nature Neuroscience, 16(6), 763-770. doi:  https://doi.org/10.1038/Nn.3381 PubMedGoogle Scholar
  12. Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.PubMedGoogle Scholar
  13. Drivonikou, G. V., Kay, P., Regier, T., Ivry, R. B., Gilbert, A. L., Franklin, A., & Davies, I. R. L. (2007). Further evidence that Whorfian effects are stronger in the right visual field than the left. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 1097-1102. doi: https://doi.org/10.1073/pnas.0610132104 PubMedGoogle Scholar
  14. Edmiston, P., & Lupyan, G. (2015). What makes words special? Words as unmotivated cues. Cognition, 143, 93-100. doi: https://doi.org/10.1016/j.cognition.2015.06.008 PubMedGoogle Scholar
  15. Firestone, C., & Scholl, B. J. (2015). Can you experience ‘top-down’ effects on perception?: The case of race categories and perceived lightness. Psychonomic Bulletin & Review, 22(3), 694-700. doi: https://doi.org/10.3758/s13423-014-0711-5 Google Scholar
  16. Firestone, C., & Scholl, B. J. (2016). Cognition does not affect perception: Evaluating the evidence for ‘top-down’effects. Behavioral and Brain Sciences, 39, 1-72.Google Scholar
  17. Fitts, P. M., & Seeger, C. M. (1953). S-R compatibility: spatial characteristics of stimulus and response codes. Journal of Experimental Psychology, 46(3), 199-210. doi: https://doi.org/10.1037/h0062827 PubMedGoogle Scholar
  18. Folstein, J., Monfared, S., & Maravel, T. (2016). The effect of category learning on attentional feature selection: Selection negativity and N250 likely reflect different processes. Journal of Vision, 16(12), 258-258.Google Scholar
  19. Folstein, J., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45(1), 152-170. doi: https://doi.org/10.1111/j.1469-8986.2007.00602.x PubMedGoogle Scholar
  20. Forder, L., He, X., & Franklin, A. (2017). Colour categories are reflected in sensory stages of colour perception when stimulus issues are resolved. PloS One, 12(5), 1-16.Google Scholar
  21. Foxe, J. J., & Simpson, G. V. (2002). Flow of activation from V1 to frontal cortex in humans. Experimental Brain Research, 142(1), 139-150. doi: https://doi.org/10.1007/s00221-001-0906-7 PubMedGoogle Scholar
  22. Franklin, A., Drivonikou, G. V., Clifford, A., Kay, P., Regier, T., & Davies, I. R. L. (2008). Lateralization of categorical perception of color changes with color term acquisition. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18221-18225. doi: https://doi.org/10.1073/pnas.0809952105 PubMedGoogle Scholar
  23. Friston, K. (2009). The free-energy principle: a rough guide to the brain? Trends in Cognitive Sciences, 13(7), 293-301. doi: https://doi.org/10.1016/j.tics.2009.04.005 PubMedGoogle Scholar
  24. Frömer, R., Maier, M., & Abdel Rahman, R. (2018). Group-level EEG-processing pipeline for flexible single trial-based analyses including linear mixed models. Frontiers in Neuroscience 12(48), 1-15. doi: https://doi.org/10.3389/fnins.2018.00048 Google Scholar
  25. Gazzaniga, M., Ivry, R. B., & Mangun, G. R. (2013). Cognitive Neuroscience: The Biology of the Mind (4th). New York: W. W. Norton.Google Scholar
  26. Gilbert, A. L., Regier, T., Kay, P., & Ivry, R. B. (2006). Whorf hypothesis is supported in the right visual field but not the left. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 489-494. doi: https://doi.org/10.1073/pnas.0509868103 PubMedGoogle Scholar
  27. Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews: Neuroscience, 14(5), 350-363. doi: https://doi.org/10.1038/Nrn3476 PubMedGoogle Scholar
  28. Glenberg, A. M., & Gallese, V. (2012). Action-based language: A theory of language acquisition, comprehension, and production. Cortex, 48(7), 905-922. doi: https://doi.org/10.1016/j.cortex.2011.04.010 PubMedGoogle Scholar
  29. Goldstone, R. L., & Hendrickson, A. T. (2010). Categorical perception. Wiley Interdisciplinary Reviews: Cognitive Science, 1(1), 69-78. doi: https://doi.org/10.1002/Wcs.26 PubMedGoogle Scholar
  30. Goldstone, R. L., Lippa, Y., & Shiffrin, R. M. (2001). Altering object representations through category learning. Cognition, 78(1), 27-43. doi: https://doi.org/10.1016/S0010-0277(00)00099-8 PubMedGoogle Scholar
  31. Green, P., & MacLeod, C. J. (2016). SIMR: an R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493-498. doi: https://doi.org/10.1111/2041-210X.12504 Google Scholar
  32. Holmes, A., Franklin, A., Clifford, A., & Davies, I. (2009). Neurophysiological evidence for categorical perception of color. Brain and Cognition, 69(2), 426-434. doi: https://doi.org/10.1016/j.bandc.2008.09.003 PubMedGoogle Scholar
  33. Holmes, K. J., & Wolff, P. (2012). Does Categorical Perception in the Left Hemisphere Depend on Language? Journal of Experimental Psychology: General, 141(3), 439-443. doi: https://doi.org/10.1037/A0027289 Google Scholar
  34. Ille, N., Berg, P., & Scherg, M. (2002). Artifact correction of the ongoing EEG using spatial filters based on artifact and brain signal topographies. Journal of Clinical Neurophysiology, 19(2), 113-124.PubMedGoogle Scholar
  35. Kappenman, E. S., & Luck, S. J. (2011). The Oxford Handbook of Event-Related Potential Components. New York: Oxford University Press.Google Scholar
  36. Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event related brain potential (ERP). Annual Review of Psychology, 62, 621-647. doi: https://doi.org/10.1146/annurev.psych.093008.131123 PubMedGoogle Scholar
  37. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2016). lmerTest: Tests in Linear Mixed Effects Models. R package version 2.0-33. Retrieved from http://CRAN.R-project.org/package=lmerTest
  38. Le Bigot, N., & Grosjean, M. (2012). Effects of Handedness on Visual Sensitivity in Perihand Space. PloS One, 7(8), e43150. doi: https://doi.org/10.1371/journal.pone.0043150 PubMedGoogle Scholar
  39. Van der Lubbe, R. H., Vogel, R. O., & Postma, A. (2005). Different effects of exogenous cues in a visual detection and discrimination task: delayed attention withdrawal and/or speeded motor inhibition? Journal of Cognitive Neuroscience, 17(12), 1829-1840.Google Scholar
  40. Luck, S. J. (2011). Electrophysiological correlates of the focusing of attention within complex visual scenes: N2pc and related ERP components. In E. S. Kappenman & S. J. Luck (Eds.), The Oxford handbook of event-related potential components (pp. 329-360). New York: Oxford University Press.Google Scholar
  41. Luck, S. J. (2014). Introduction to the Event-Related Potential Technique (2nd). Cambridge: MIT Press.Google Scholar
  42. Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Sciences, 4(11), 432-440.PubMedGoogle Scholar
  43. Lupyan, G. (2012). Linguistically modulated perception and cognition: the label-feedback hypothesis. Frontiers in Psychology, 3(54), 1-13. doi: https://doi.org/10.3389/fpsyg.2012.00054 Google Scholar
  44. Lupyan, G. (2017). Objective Effects of Knowledge on Visual Perception. Journal of Experimental Psychology: Human Perception and Performance, 43(4), 794-806. doi: https://doi.org/10.1037/xhp0000343 PubMedGoogle Scholar
  45. Lupyan, G., & Clark, A. (2015). Words and the World: Predictive Coding and the Language-Perception-Cognition Interface. Current Directions in Psychological Science, 24(4), 279-284. doi: https://doi.org/10.1177/0963721415570732 Google Scholar
  46. Lupyan, G., Rakison, D. H., & McClelland, J. L. (2007). Language is not just for talking - Redundant labels facilitate learning of novel categories. Psychological Science, 18(12), 1077-1083. doi: https://doi.org/10.1111/j.1467-9280.2007.02028.x PubMedGoogle Scholar
  47. Lupyan, G., & Thompson-Schill, S. L. (2012). The Evocative Power of Words: Activation of Concepts by Verbal and Nonverbal Means. Journal of Experimental Psychology: General, 141(1), 170-186. doi: https://doi.org/10.1037/A0024904 Google Scholar
  48. Lupyan, G., Thompson-Schill, S. L., & Swingley, D. (2010). Conceptual Penetration of Visual Processing. Psychological Science, 21(5), 682-691. doi: https://doi.org/10.1177/0956797610366099 PubMedGoogle Scholar
  49. Lupyan, G., & Ward, E. J. (2013). Language can boost otherwise unseen objects into visual awareness. Proceedings of the National Academy of Sciences of the United States of America, 110(35), 14196-14201. doi: https://doi.org/10.1073/pnas.1303312110 PubMedGoogle Scholar
  50. Maier, M., & Abdel Rahman, R. (2018). Native Language Promotes Access to Visual Consciousness. Psychological Science, 29(11), 1757–1772. doi: https://doi.org/10.1177/0956797618782181 PubMedGoogle Scholar
  51. Maier, M., Frömer, R., Rost, J., Sommer, W., & Abdel Rahman, R. (submitted). Mental imagery and visual perception: shared cognitive mechanisms and similar time course. Manuscript submitted for publication.Google Scholar
  52. Maier, M., Glage, P., Hohlfeld, A., & Abdel Rahman, R. (2014). Does the semantic content of verbal categories influence categorical perception? An ERP study. Brain and Cognition, 91(0), 1-10. doi: https://doi.org/10.1016/j.bandc.2014.07.008 PubMedGoogle Scholar
  53. Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology: Human Perception and Performance, 17(4), 1057-1074. doi: https://doi.org/10.1037/0096-1523.17.4.1057 PubMedGoogle Scholar
  54. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177-190. doi: https://doi.org/10.1016/j.jneumeth.2007.03.024 PubMedGoogle Scholar
  55. Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error and power in linear mixed models. Journal of memory and language, 94, 305-315. doi: https://doi.org/10.1016/j.jml.2017.01.001 Google Scholar
  56. McRae, K., Cree, G. S., Seidenberg, M. S., & Mcnorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37(4), 547-559. doi: https://doi.org/10.3758/bf03192726 PubMedGoogle Scholar
  57. Miller, T. M., Schmidt, T. T., Blankenburg, F., & Pulvermüller, F. (2018). Verbal labels facilitate tactile perception. Cognition, 171, 172-179. doi: https://doi.org/10.1016/j.cognition.2017.10.010 PubMedGoogle Scholar
  58. Mo, L., Xu, G. P., Kay, P., & Tan, L. H. (2011). Electrophysiological evidence for the left-lateralized effect of language on preattentive categorical perception of color. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14026-14030. doi: https://doi.org/10.1073/pnas.1111860108 PubMedGoogle Scholar
  59. Notman, L. A., Sowden, P. T., & Özgen, E. (2005). The nature of learned categorical perception effects: a psychophysical approach. Cognition, 95(2), B1-B14. doi: https://doi.org/10.1016/j.cognition.2004.07.002 PubMedGoogle Scholar
  60. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience, 2011, 9. doi: https://doi.org/10.1155/2011/156869 Google Scholar
  61. Özgen, E., & Davies, I. R. L. (2002). Acquisition of categorical color perception: A perceptual learning approach to the linguistic relativity hypothesis. Journal of Experimental Psychology-General, 131(4), 477-493. doi: https://doi.org/10.1037//0096-3445.131.4.477 PubMedGoogle Scholar
  62. Pinheiro, J. C., & Bates, D. (2000). Mixed-Effects Models in S and S-PLUS. New York: Springer.Google Scholar
  63. Pratt, H. (2011). Sensory ERP components. In S. J. Luck & E. S. Kappenman (Eds.), The Oxford handbook of event-related potential components (pp. 89-114). New York: Oxford University Press.Google Scholar
  64. Pylyshyn, Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22(3), 341-365.PubMedGoogle Scholar
  65. R Core Team. (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/ Google Scholar
  66. Rabovsky, M., Schad, D. J., & Abdel Rahman, R. (2016). Language production is facilitated by semantic richness but inhibited by semantic density: Evidence from picture naming. Cognition, 146, 240-244. doi: https://doi.org/10.1016/j.cognition.2015.09.016 PubMedGoogle Scholar
  67. Rabovsky, M., Sommer, W., & Abdel Rahman, R. (2012). The time course of semantic richness effects in visual word recognition. Frontiers in Human Neuroscience, 6(11), 1-9. doi: https://doi.org/10.3389/Fnhum.2012.00011 Google Scholar
  68. Raftopoulos, A. (2015). The Cognitive Impenetrability of Perception and Theory-Ladenness. Journal for General Philosophy of Science, 46(1), 87-103. doi: https://doi.org/10.1007/s10838-015-9288-6 Google Scholar
  69. Raftopoulos, A. (2017). Pre-cueing, the Epistemic Role of Early Vision, and the Cognitive Impenetrability of Early Vision. Frontiers in Psychology, 8, 1156. doi: https://doi.org/10.3389/fpsyg.2017.01156 PubMedGoogle Scholar
  70. Raftopoulos, A., & Lupyan, G. (2018). Editorial: [Pre-cueing Effects on Perception and Cognitive Penetrability]. Frontiers in Psychology, 8(230). doi: https://doi.org/10.3389/fpsyg.2018.00230
  71. Regier, T., & Kay, P. (2009). Language, thought, and color: Whorf was half right. Trends in Cognitive Sciences, 13(10), 439-446. doi: https://doi.org/10.1016/j.tics.2009.07.001 PubMedGoogle Scholar
  72. Regier, T., & Xu, Y. (2017). The Sapir-Whorf hypothesis and inference under uncertainty. Wiley Interdisciplinary Reviews-Cognitive Science, 8(6), 1-11. doi: https://doi.org/10.1002/wcs.1440 Google Scholar
  73. Roberson, D., & Davidoff, J. (2000). The categorical perception of colors and facial expressions: The effect of verbal interference. Memory and Cognition, 28(6), 977-986. doi: https://doi.org/10.3758/BF03209345 PubMedGoogle Scholar
  74. Roberson, D., Pak, H., & Hanley, J. R. (2008). Categorical perception of colour in the left and right visual field is verbally mediated: Evidence from Korean. Cognition, 107(2), 752-762. doi: https://doi.org/10.1016/j.cognition.2007.09.001 PubMedGoogle Scholar
  75. Rossion, B., & Jacques, C. (2011). The N170: understanding the time-course of face perception in the human brain. In S. J. Luck & E. S. Kappenman (Eds.), The Oxford handbook of event-related potential components (pp. 115-142). Berlin: Oxford University Press.Google Scholar
  76. Rossion, B., Joyce, C. A., Cottrell, G. W., & Tarr, M. J. (2003). Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. Neuroimage, 20(3), 1609-1624.PubMedGoogle Scholar
  77. Scott, L. S., Tanaka, J. W., Sheinberg, D. L., & Curran, T. (2006). A Reevaluation of the Electrophysiological Correlates of Expert Object Processing. Journal of Cognitive Neuroscience, 18(9), 1453-1465. doi: https://doi.org/10.1162/jocn.2006.18.9.1453 PubMedGoogle Scholar
  78. Steckley, J. (2008). White Lies about the Inuit. Toronto: Broadview Press.Google Scholar
  79. Tanaka, J. W., & Curran, T. (2001). A neural basis for expert object recognition. Psychological Science, 12(1), 43-47. doi: https://doi.org/10.1111/1467-9280.00308 PubMedGoogle Scholar
  80. Thierry, G. (2016). Neurolinguistic Relativity: How Language Flexes Human Perception and Cognition. Language Learning, 66(3), 690-713. doi: https://doi.org/10.1111/lang.12186 PubMedGoogle Scholar
  81. Thierry, G., Athanasopoulos, P., Wiggett, A., Dering, B., & Kuipers, J. R. (2009). Unconscious effects of language-specific terminology on preattentive color perception. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4567-4570. doi: https://doi.org/10.1073/pnas.0811155106 PubMedGoogle Scholar
  82. Tomasello, R., Garagnani, M., Wennekers, T., & Pulvermüller, F. (2017). Brain connections of words, perceptions and actions: A neurobiological model of spatio-temporal semantic activation in the human cortex. Neuropsychologia, 98, 111-129. doi: https://doi.org/10.1016/j.neuropsychologia.2016.07.004 PubMedGoogle Scholar
  83. Winawer, J., Witthoft, N., Frank, M. C., Wu, L., Wade, A. R., & Boroditsky, L. (2007). Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 7780-7785. doi: https://doi.org/10.1073/pnas.0701644104 PubMedGoogle Scholar
  84. Witzel, C., & Gegenfurtner, K. R. (2011). Is there a lateralized category effect for color? Journal of Vision, 11(12), 1-25. doi: https://doi.org/10.1167/11.12.16 Google Scholar
  85. Witzel, C., & Gegenfurtner, K. R. (2015). Categorical facilitation with equally discriminable colors. Journal of Vision, 15(8), 1-33. doi: https://doi.org/10.1167/15.8.22 Google Scholar
  86. Witzel, C., & Gegenfurtner, K. R. (2016). Categorical perception for red and brown. Journal of Experimental Psychology: Human Perception and Performance, 42(4), 540-570. doi: https://doi.org/10.1037/xhp0000154 PubMedGoogle Scholar
  87. Yu, M., Li, Y., Mo, C., & Mo, L. (2017). Newly learned categories induce pre-attentive categorical perception of faces. Scientific Reports, 7(1), 1-9. doi: https://doi.org/10.1038/s41598-017-14104-6 Google Scholar
  88. Zhou, K., Mo, L., Kay, P., Kwok, V. P. Y., Ip, T. N. M., & Tan, L. H. (2010). Newly trained lexical categories produce lateralized categorical perception of color. Proceedings of the National Academy of Sciences of the United States of America, 107(22), 9974-9978. doi: https://doi.org/10.1073/pnas.1005669107 PubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of PsychologyHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Berlin School of Mind and BrainBerlinGermany

Personalised recommendations