Advertisement

Self-affirmation enhances the processing of uncertainty: An event-related potential study

  • Ruolei Gu
  • Jing Yang
  • Ziyan Yang
  • Zihang Huang
  • Mingzheng Wu
  • Huajian CaiEmail author
Article
  • 149 Downloads

Abstract

We proposed that self-affirmation can endow people with more cognitive resource to cope with uncertainty. We tested this possibility with an event-related potential (ERP) study by examining how self-affirmation influences ambiguous feedback processing in a simple gambling task, which was used to investigate risk decision-making. We assigned 48 participants randomly to the affirmation and non-affirmation (i.e., control) groups. All participants accepted the manipulation first and then completed the gambling task with an electroencephalogram (EEG) recording, in which participants might receive a positive (winning), negative (losing), or ambiguous (unknown valence) outcome after they made a choice. We considered both the feedback-related negativity (FRN) and P3 components elicited by the outcome feedback, which reflected the amount of cognitive resources being invested in the early and late stages of the outcome feedback processing, respectively. ERP results showed that ambiguous feedback elicited a larger FRN among affirmed participants than unaffirmed participants but exerted no influence on the P3. This finding suggests that self-affirmation may help coping with uncertainty by enhancing the early processing of uncertainty.

Keywords

Self-affirmation Uncertainty Cognitive resource Outcome feedback Event-related potential (ERP) Feedback-related negativity (FRN) 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31571148, 31571124).

Authors contributions

RG and HC conceived and designed the experiments. JY performed the experiments. RG and JY analyzed the data. RG, ZY, ZH, and HC wrote and revised the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

13415_2018_673_MOESM1_ESM.docx (37 kb)
ESM 1 (DOCX 36 kb)

References

  1. Bach, D. R., & Dolan, R. J. (2012). Knowing how much you don't know: A neural organization of uncertainty estimates. Nature Reviews Neuroscience, 13(8), 572-586. doi: https://doi.org/10.1038/nrn3289 Google Scholar
  2. Becker, M. P., Nitsch, A. M., Miltner, W. H., & Straube, T. (2014). A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task. Journal of Neuroscience, 34(8), 3005-3012. doi: https://doi.org/10.1523/JNEUROSCI.3684-13.2014 Google Scholar
  3. Bland, A. R., & Schaefer, A. (2012). Different varieties of uncertainty in human decision-making. Frontiers in Neuroscience, 6, 85. doi: https://doi.org/10.3389/fnins.2012.00085 Google Scholar
  4. Bress, J. N., Smith, E., Foti, D., Klein, D. N., & Hajcak, G. (2012). Neural response to reward and depressive symptoms in late childhood to early adolescence. Biological Psychology, 89(1), 156-162. doi: https://doi.org/10.1016/j.biopsycho.2011.10.004 Google Scholar
  5. Cai, H., Sedikides, C., & Jiang, L. (2013). Familial self as a potent source of affirmation: Evidence from China. Social Psychological and Personality Science, 4(5), 529-537. doi: https://doi.org/10.1177/1948550612469039 Google Scholar
  6. Cascio, C. N., O'Donnell, M. B., Tinney, F. J., Lieberman, M. D., Taylor, S. E., Strecher, V. J., & Falk, E. B. (2016). Self-affirmation activates brain systems associated with self-related processing and reward and is reinforced by future orientation. Social Cognitive and Affective Neuroscience, 11(4), 621-629. doi: https://doi.org/10.1093/scan/nsv136 Google Scholar
  7. Cohen, G. L., & Sherman, D. K. (2014). The psychology of change: Self-affirmation and social psychological intervention. Annual Review of Psychology, 65, 333-371. doi: https://doi.org/10.1146/annurev-psych-010213-115137 Google Scholar
  8. Cohen, J. (1973). Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educational and Psychological Measurement, 33(1), 107-112. doi: https://doi.org/10.1177/001316447303300111 Google Scholar
  9. Cohen, J., & Polich, J. (1997). On the number of trials needed for P300. International Journal of Psychophysiology, 25(3), 249-255. doi: https://doi.org/10.1016/S0167-8760(96)00743-X Google Scholar
  10. Cohen, M. X., Wilmes, K., & van de Vijver, I. (2011). Cortical electrophysiological network dynamics of feedback learning. Trends in Cognitive Sciences, 15(12), 558-566. doi: https://doi.org/10.1016/j.tics.2011.10.004 Google Scholar
  11. Dayan, P., & Niv, Y. (2008). Reinforcement learning: The good, the bad and the ugly. Current Opinion in Neurobiology, 18(2), 185-196. doi: https://doi.org/10.1016/j.conb.2008.08.003 Google Scholar
  12. DeWall, C. N., Baumeister, R. F., Mead, N. L., & Vohs, K. D. (2011). How leaders self-regulate their task performance: Evidence that power promotes diligence, depletion, and disdain. Journal of Personality and Social Psychology, 100(1), 47-65. doi: https://doi.org/10.1037/a0020932 Google Scholar
  13. Engle, R. W., Conway, A. R., Tuholski, S. W., & Shisler, R. J. (1995). A resource account of inhibition. Psychological Science, 6(2), 122-125. doi: https://doi.org/10.1111/j.1467-9280.1995.tb00318.x Google Scholar
  14. Ernst, B., & Steinhauser, M. (2015). Effects of invalid feedback on learning and feedback-related brain activity in decision-making. Brain and Cognition, 99, 78-86. doi: https://doi.org/10.1016/j.bandc.2015.07.006 Google Scholar
  15. Fox, C. R., Erner, C., & Walters, D. J. (2016). Decision Under risk: From the field to the laboratory and back. In G. Keren & G. Wu (Eds.), The Wiley Blackwell handbook of judgment and decision making (Vol. 1, pp. 43-88). West Sussex, UK: John Wiley & Sons.Google Scholar
  16. Furnham, A., & Ribchester, T. (1995). Tolerance of ambiguity: A review of the concept, its measurement and applications. Current Psychology, 14(3), 179-199. doi: https://doi.org/10.1007/BF02686907 Google Scholar
  17. Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295(5563), 2279-2282. doi: https://doi.org/10.1126/science.1066893 Google Scholar
  18. Gentsch, K., Grandjean, D., & Scherer, K. R. (2013). Temporal dynamics of event-related potentials related to goal conduciveness and power appraisals. Psychophysiology, 50(10), 1010-1022. doi: https://doi.org/10.1111/psyp.12079 Google Scholar
  19. Gibbons, H., Schnuerch, R., & Stahl, J. (2016). From positivity to negativity bias: Ambiguity affects the neurophysiological signatures of feedback processing. Journal of Cognitive Neuroscience, 28(4), 542-557. doi: https://doi.org/10.1162/jocn_a_00921 Google Scholar
  20. Gilbert, D. T., Krull, D. S., & Pelham, B. W. (1988). Of thoughts unspoken: Social inference and the self-regulation of behavior. Journal of Personality and Social Psychology, 55(5), 685-694. doi: https://doi.org/10.1037/0022-3514.55.5.685 Google Scholar
  21. Goyer, J. P., Woldorff, M. G., & Huettel, S. A. (2008). Rapid electrophysiological brain responses are influenced by both valence and magnitude of monetary rewards. Journal of Cognitive Neuroscience, 20(11), 2058-2069. doi: https://doi.org/10.1162/jocn.2008.20134 Google Scholar
  22. Granholm, E., Verney, S. P., Perivoliotis, D., & Miura, T. (2007). Effortful cognitive resource allocation and negative symptom severity in chronic schizophrenia. Schizophrenia Bulletin, 33(3), 831-842. doi: https://doi.org/10.1093/schbul/sbl040 Google Scholar
  23. Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14(7), 488-501. doi: https://doi.org/10.1038/nrn3524 Google Scholar
  24. Gu, R., Feng, X., Broster, L. S., Yuan, L., Xu, P., & Luo, Y.-j. (2017). Valence and magnitude ambiguity in feedback processing. Brain and Behavior, 7(7), e00672. doi: https://doi.org/10.1002/brb3.672 Google Scholar
  25. Gu, R., Ge, Y., Jiang, Y., & Luo, Y. J. (2010). Anxiety and outcome evaluation: The good, the bad and the ambiguous. Biological Psychology, 85(2), 200-206. doi: https://doi.org/10.1016/j.biopsycho.2010.07.001 Google Scholar
  26. Gu, R., Huang, Y. X., & Luo, Y. J. (2010). Anxiety and feedback negativity. Psychophysiology, 47(5), 961-967. doi: https://doi.org/10.1111/j.1469-8986.2010.00997.x Google Scholar
  27. Gu, R., Lei, Z., Broster, L., Wu, T., Jiang, Y., & Luo, Y. J. (2011). Beyond valence and magnitude: A flexible evaluative coding system in the brain. Neuropsychologia, 49(14), 3891-3897. doi: https://doi.org/10.1016/j.neuropsychologia.2011.10.006 Google Scholar
  28. Gu, R., Wu, T., Jiang, Y., & Luo, Y. J. (2011). Woulda, coulda, shoulda: The evaluation and the impact of the alternative outcome. Psychophysiology, 48(10), 1354-1360. doi: https://doi.org/10.1111/j.1469-8986.2011.01215.x Google Scholar
  29. Gu, R., Yang, J., Shi, Y., Luo, Y., Luo, Y. L. L., & Cai, H. (2016). Be strong enough to say no: Self-affirmation increases rejection to unfair offers. Frontiers in Psychology, 7, 1824. doi: https://doi.org/10.3389/fpsyg.2016.01824 Google Scholar
  30. Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2006). The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biological Psychology, 71(2), 148-154. doi: https://doi.org/10.1016/j.biopsycho.2005.04.001 Google Scholar
  31. Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2007). It's worse than you thought: The feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology, 44(6), 905-912. doi: https://doi.org/10.1111/j.1469-8986.2007.00567.x Google Scholar
  32. Hastie, R. (2001). Problems for judgment and decision making. Annual Review of Psychology, 52, 653-683. doi: https://doi.org/10.1146/annurev.psych.52.1.653 Google Scholar
  33. Hirsh, J. B., & Inzlicht, M. (2008). The devil you know: Neuroticism predicts neural response to uncertainty. Psychological Science, 19(10), 962-967. doi: https://doi.org/10.1111/j.1467-9280.2008.02183.x Google Scholar
  34. Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679-709. doi: https://doi.org/10.1037/0033-295X.109.4.679 Google Scholar
  35. Holroyd, C. B., Hajcak, G., & Larsen, J. T. (2006). The good, the bad and the neutral: Electrophysiological responses to feedback stimuli. Brain Research, 1105(1), 93-101. doi: https://doi.org/10.1016/j.brainres.2005.12.015 Google Scholar
  36. Holroyd, C. B., & Krigolson, O. E. (2007). Reward prediction error signals associated with a modified time estimation task. Psychophysiology, 44(6), 913-917. doi: https://doi.org/10.1111/j.1469-8986.2007.00561.x Google Scholar
  37. Johns, M., Inzlicht, M., & Schmader, T. (2008). Stereotype threat and executive resource depletion: Examining the influence of emotion regulation. Journal of Experimental Psychology: General, 137(4), 691-705. doi: https://doi.org/10.1037/a0013834 Google Scholar
  38. Jonas, E., Mcgregor, I., Klackl, J., Agroskin, D., Fritsche, I., Holbrook, C., ... Quirin, M. (2014). Threat and defense: From anxiety to approach. In J. M. Olson & M. P. Zanna (Eds.), Advances in Experimental Social Psychology (Vol. 49, pp. 219-286). San Diego, CA: Academic Press.Google Scholar
  39. Kahneman, D., & Tversky, A. (1982). Variants of uncertainty. Cognition, 11(2), 143-157. doi: https://doi.org/10.1016/0010-0277(82)90023-3 Google Scholar
  40. Kamal, A. M., & Burkell, J. (2013). Uncertainty revisited: People and information in a world of unknowns. Canadian Journal of Information and Library Science, 35(4), 384-396. doi: https://doi.org/10.1353/ils.2011.0030 Google Scholar
  41. Kok, A. (1997). Event-related-potential (ERP) reflections of mental resources: A review and synthesis. Biological Psychology, 45(1-3), 19-56. doi: https://doi.org/10.1016/S0301-0511(96)05221-0 Google Scholar
  42. Koole, S. L., Smeets, K., Van Knippenberg, A., & Dijksterhuis, A. (1999). The cessation of rumination through self-affirmation. Journal of Personality and Social Psychology, 77(1), 111-125. doi: https://doi.org/10.1037/0022-3514.77.1.111 Google Scholar
  43. Krigolson, O. E., Hassall, C. D., Satel, J., & Klein, R. M. (2015). The impact of cognitive load on reward evaluation. Brain Research, 1627, 225-232. doi: https://doi.org/10.1016/j.brainres.2015.09.028 Google Scholar
  44. Krigolson, O. E., Heinekey, H., Kent, C. M., & Handy, T. C. (2012). Cognitive load impacts error evaluation within medial-frontal cortex. Brain Research, 1430, 62–67. doi: https://doi.org/10.1016/j.brainres.2011.10.028 Google Scholar
  45. Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. Science, 197(4305), 792-795. doi: https://doi.org/10.1126/science.887923 Google Scholar
  46. Legault, L., Al-Khindi, T., & Inzlicht, M. (2012). Preserving integrity in the face of performance threat: Self-affirmation enhances neurophysiological responsiveness to errors. Psychological Science, 23(12), 1455-1460. doi: https://doi.org/10.1177/0956797612448483 Google Scholar
  47. Li, P., Song, X., Wang, J., Zhou, X., Li, J., Lin, F., ... Roberson, D. (2015). Reduced sensitivity to neutral feedback versus negative feedback in subjects with mild depression: Evidence from event-related potentials study. Brain and Cognition, 100, 15-20.  https://doi.org/10.1016/j.bandc.2015.08.004
  48. Lipshitz, R., & Strauss, O. (1997). Coping with uncertainty: A naturalistic decision-making analysis. Organizational Behavior and Human Decision Processes, 69(2), 149-163. doi: https://doi.org/10.1006/obhd.1997.2679 Google Scholar
  49. Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn't). Psychophysiology, 54(1), 146-157. doi: https://doi.org/10.1111/psyp.12639 Google Scholar
  50. Lust, S. A., & Bartholow, B. D. (2009). Self-reported and P3 event-related potential evaluations of condoms: Does what we say match how we feel? Psychophysiology, 46(2), 420-424. doi: https://doi.org/10.1111/j.1469-8986.2008.00775.x Google Scholar
  51. Marco-Pallares, J., Cucurell, D., Munte, T. F., Strien, N., & Rodriguez-Fornells, A. (2011). On the number of trials needed for a stable feedback-related negativity. Psychophysiology, 48(6), 852-860. doi: https://doi.org/10.1111/j.1469-8986.2010.01152.x Google Scholar
  52. McQueen, A., & Klein, W. M. (2006). Experimental manipulations of self-affirmation: A systematic review. Self and Identity, 5(4), 289-354. doi: https://doi.org/10.1080/15298860600805325 Google Scholar
  53. Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a "generic" neural system for error detection. Journal of Cognitive Neuroscience, 9(6), 788-798. doi: https://doi.org/10.1162/jocn.1997.9.6.788 Google Scholar
  54. Monat, A., Averill, J. R., & Lazarus, R. S. (1972). Anticipatory stress and coping reactions under various conditions of uncertainty. Journal of Personality and Social Psychology, 24(2), 237-253. doi: https://doi.org/10.1037/h0033297 Google Scholar
  55. Moore, B., Underwood, B., Heberlein, P., Doyle, L., & Litzie, K. (1979). Generalization of feedback about performance. Cognitive Therapy and Research, 3(4), 371–380. doi: https://doi.org/10.1007/BF01184452 Google Scholar
  56. Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin, 131(4), 510-532. doi: https://doi.org/10.1037/0033-2909.131.4.510 Google Scholar
  57. Nieuwenhuis, S., Yeung, N., Holroyd, C. B., Schurger, A., & Cohen, J. D. (2004). Sensitivity of electrophysiological activity from medial frontal cortex to utilitarian and performance feedback. Cerebral Cortex, 14(7), 741-747. doi: https://doi.org/10.1093/cercor/bhh034 Google Scholar
  58. Oliveira, F. T. P., McDonald, J. J., & Goodman, D. (2007). Performance monitoring in the anterior cingulate is not all error related: Expectancy deviation and the representation of action-outcome associations. Journal of Cognitive Neuroscience, 19(12), 1994-2004. doi: https://doi.org/10.1162/jocn.2007.19.12.1994 Google Scholar
  59. Pfabigan, D. M., Seidel, E. M., Paul, K., Grahl, A., Sailer, U., Lanzenberger, R., ... Lamm, C. (2015). Context-sensitivity of the feedback-related negativity for zero-value feedback outcomes. Biological Psychology, 104, 184-192.  https://doi.org/10.1016/j.biopsycho.2014.12.007
  60. Philiastides, M. G., Biele, G., Vavatzanidis, N., Kazzer, P., & Heekeren, H. R. (2010). Temporal dynamics of prediction error processing during reward-based decision making. Neuroimage, 53(1), 221-232. doi: https://doi.org/10.1016/j.neuroimage.2010.05.052 Google Scholar
  61. Pintzinger, N. M., Pfabigan, D. M., Pfau, L., Kryspin-Exner, I., & Lamm, C. (2017). Temperament differentially influences early information processing in men and women: Preliminary electrophysiological evidence of attentional biases in healthy individuals. Biological Psychology, 122, 69-79. doi: https://doi.org/10.1016/j.biopsycho.2016.07.007 Google Scholar
  62. Platt, M. L., & Huettel, S. A. (2008). Risky business: The neuroeconomics of decision making under uncertainty. Nature Neuroscience, 11(4), 398-403. doi: https://doi.org/10.1038/nn2062 Google Scholar
  63. Polezzi, D., Sartori, G., Rumiati, R., Vidotto, G., & Daum, I. (2010). Brain correlates of risky decision-making. Neuroimage, 49(2), 1886-1894. doi: https://doi.org/10.1016/j.neuroimage.2009.08.068 Google Scholar
  64. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. doi: https://doi.org/10.1016/j.clinph.2007.04.019 Google Scholar
  65. Posner, M. I., Snyder, C. R., & Solso, R. (2004). Attention and cognitive control. In D. A. Balota & E. J. Marsh (Eds.), Cognitive psychology: Key readings. New York, NY: Psychology Press.Google Scholar
  66. San Martín, R. (2012). Event-related potential studies of outcome processing and feedback-guided learning. Frontiers in Human Neuroscience, 6, 304. doi: https://doi.org/10.3389/fnhum.2012.00304 Google Scholar
  67. Semlitsch, H. V., Anderer, P., Schuster, P., & Presslich, O. (1986). A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23(6), 695–703.  https://doi.org/10.1111/j.1469-8986.1986.tb00696.x
  68. Sherman, D. K. (2013). Self-affirmation: Understanding the effects. Social and Personality Psychology Compass, 7(11), 834-845. doi: https://doi.org/10.1111/spc3.12072 Google Scholar
  69. Sherman, D. K., & Cohen, G. L. (2006). The psychology of self-defense: Self-affirmation theory. In M. P. Zanna (Ed.), Advances in experimental social psychology (Vol. 38, pp. 183-242). San Diego, CA: Academic Press.Google Scholar
  70. Sherman, D. K., & Hartson, K. A. (2010). Reconciling self-protection with self-improvement. In M. D. Alicke & C. Sedikides (Eds.), Handbook of self-enhancement and self-protection (pp. 128-151). New York: The Guilford Press.Google Scholar
  71. Simons, R. F. (2010). The way of our errors: Theme and variations. Psychophysiology, 47(1), 1-14. doi: https://doi.org/10.1111/j.1469-8986.2009.00929.x Google Scholar
  72. Smith, B. W., Mitchell, D. G., Hardin, M. G., Jazbec, S., Fridberg, D., Blair, R. J., & Ernst, M. (2009). Neural substrates of reward magnitude, probability, and risk during a wheel of fortune decision-making task. Neuroimage, 44(2), 600-609. doi: https://doi.org/10.1016/j.neuroimage.2008.08.016 Google Scholar
  73. Steele, C. M. (1988). The psychology of self-affirmation: Sustaining the integrity of the self. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 21, pp. 261-302). New York: Academic Press.Google Scholar
  74. Summerfield, C., Behrens, T. E., & Koechlin, E. (2011). Perceptual classification in a rapidly changing environment. Neuron, 71(4), 725–736.  https://doi.org/10.1016/j.neuron.2011.06.022
  75. Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150(3700), 1187-1188. doi: https://doi.org/10.1126/science.150.3700.1187 Google Scholar
  76. Tiedens, L. Z., & Linton, S. (2001). Judgment under emotional certainty and uncertainty: The effects of specific emotions on information processing. Journal of Personality and Social Psychology, 81(6), 973-988. doi: https://doi.org/10.1037//0022-3514.81.6.973 Google Scholar
  77. Utku, H., Erzengin, O. U., Cakmak, E. D., & Karakas, S. (2002). Discrimination of brain's neuroelectric responses by a decision-making function. Journal of Neuroscience Methods, 114(1), 25-31. doi: https://doi.org/10.1016/S0165-0270(01)00519-2 Google Scholar
  78. Vazire, S. (2016). Editorial. Social Psychological and Personality Science, 7(1), 3-7. doi: https://doi.org/10.1177/1948550615603955 Google Scholar
  79. Vecchio, R. P. (1990). Theoretical and empirical examination of cognitive resource theory. Journal of Applied Psychology, 75(2), 141-147. doi: https://doi.org/10.1037/0021-9010.75.2.141 Google Scholar
  80. Wang, J., Novemsky, N., Dhar, R., & Baumeister, R. F. (2010). Tradeoffs and depletion in choice. Journal of Marketing Research, 47(5), 910-919. doi: https://doi.org/10.1509/jmkr.47.5.910 Google Scholar
  81. Webb, C. A., Auerbach, R. P., Bondy, E., Stanton, C. H., Foti, D., & Pizzagalli, D. A. (2017). Abnormal neural responses to feedback in depressed adolescents. Journal of Abnormal Psychology, 126(1), 19-31. doi: https://doi.org/10.1037/abn0000228 Google Scholar
  82. Wu, Y., & Zhou, X. L. (2009). The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Research, 1286, 114-122. doi: https://doi.org/10.1016/j.brainres.2009.06.032 Google Scholar
  83. Yeung, N., & Sanfey, A. G. (2004). Independent coding of reward magnitude and valence in the human brain. Journal of Neuroscience, 24(28), 6258-6264. doi: https://doi.org/10.1523/JNEUROSCI.4537-03.2004 Google Scholar
  84. Zhang, D., Gu, R., Broster, L. S., Jiang, Y., Luo, W., Zhang, J., & Luo, Y. J. (2014). Linking brain electrical signals elicited by current outcomes with future risk decision-making. Frontiers in Behavioral Neuroscience, 8, 84. doi: https://doi.org/10.3389/fnbeh.2014.00084 Google Scholar
  85. Zhu, X., Gu, R., Wu, H., & Luo, Y. (2015). Self-reflection modulates the outcome evaluation process: Evidence from an ERP study. International Journal of Psychophysiology, 98(3 Pt 1), 389-393. doi: https://doi.org/10.1016/j.ijpsycho.2015.08.001 Google Scholar
  86. Zhu, X., Zhang, H., Wu, L., Yang, S., Wu, H., Luo, W., ... Luo, Y. J. (2018). The influence of self-construals on the ERP response to the rewards for self and mother. Cognitive Affective & Behavioral Neuroscience, 18(2), 366-374.  https://doi.org/10.3758/s13415-018-0575-7

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Ruolei Gu
    • 1
    • 2
  • Jing Yang
    • 3
  • Ziyan Yang
    • 1
    • 2
  • Zihang Huang
    • 1
    • 2
  • Mingzheng Wu
    • 4
  • Huajian Cai
    • 1
    • 2
    Email author
  1. 1.CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
  2. 2.Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.College of TourismHuaqiao UniversityQuanzhouChina
  4. 4.Department of PsychologyZhejiang UniversityHangzhouChina

Personalised recommendations