Advertisement

Socioeconomic disadvantage, brain morphometry, and attentional bias to threat in middle childhood

  • Alexander J. DuffordEmail author
  • Hannah Bianco
  • Pilyoung Kim
Article

Abstract

Socioeconomic disadvantage is associated with higher rates of psychopathology as well as hippocampus, amygdala and prefrontal cortex structure. However, little is known about how variations in brain morphometry are associated with socio-emotional risks for mood disorders in children growing up in families experiencing low income. In the current study, using structural magnetic resonance imaging, we examined the relationship between socioeconomic disadvantage and gray matter volume in the hippocampus, amygdala, and ventrolateral prefrontal cortex in a sample of children (n = 34) in middle childhood. Using an affective dot probe paradigm, we examined the association between gray matter volume in these regions and attentional bias to threat, a risk marker for mood disorders including anxiety disorders. We found that lower income-to-needs ratio was associated with lower bilateral hippocampal and right amygdala volume, but not prefrontal cortex volumes. Moreover, lower attentional bias to threat was associated with greater left hippocampal volume. We provide evidence of a relationship between income-related variations in brain structure and attentional bias to threat, a risk for mood disorders. Therefore, these findings support an environment-morphometry-behavior relationship that contributes to the understanding of income-related mental health disparities in childhood.

Keywords

Family income Hippocampus Amygdala Attentional bias Middle childhood Morphometry 

Notes

Acknowledgements

This work was supported by the National Institute of Child Health and Human Development [R21HD078797; R01 HD090068]; the Professional Research Opportunity for Faculty (PROF) and Faculty Research Fund (FRF), University of Denver; and the Victoria S. Levin Award For Early Career Success in Young Children's Mental Health Research, Society for Research in Child Development (SRCD). Special thanks to Daniel Mason, Christian Capistrano, Laura Jeske, Daniel Bartholomew, Naomi Wallace, Nanxi Xu, and Christina Congleton for their help in recruitment, data collection, and data entry. The authors thank Christopher Madan for his guide on visualization of the MRI data (https://f1000research.com/articles/4-466/v1), Dr. Sarah Watamura for her insightful comments on the manuscript, as well as Dr. Cathy Durso, Dr. Kimberly Chiew, and Dr. Peter Sokol-Hessner for their comments on the statistical analyses. The authors also thank Rebekah Tribble for her editorial comments. The authors declare that they have no conflicts of interest in the research.

Supplementary material

13415_2018_670_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 20 kb)

References

  1. Abend, R., Pine, D., & Bar-Haim, Y. (2014). The TAU-NIMH Attention Bias Measurement Toolbox.Google Scholar
  2. Alvarez, R. P., Biggs, A., Chen, G., Pine, D. S., & Grillon, C. (2008). Contextual fear conditioning in humans: Cortical-hippocampal and amygdala contributions. Journal of Neuroscience, 28(24), 6211-6219.CrossRefPubMedGoogle Scholar
  3. Augustine, J. M., & Crosnoe, R. (2010). Mothers’ depression and educational attainment and their children’s academic trajectories. Journal of Health and Social Behavior, 51(3), 274-290.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & Van Ijzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133(1), 1.CrossRefPubMedGoogle Scholar
  5. Barch, D., Pagliaccio, D., Belden, A., Harms, M. P., Gaffrey, M., Sylvester, C. M., . . . Luby, J. (2016). Effect of hippocampal and amygdala connectivity on the relationship between preschool poverty and school-age depression. American Journal of Psychiatry, 173(6), 625-634.Google Scholar
  6. Barry, T. J., Vervliet, B., & Hermans, D. (2015). An integrative review of attention biases and their contribution to treatment for anxiety disorders. Front Psychol, 6, 968.  https://doi.org/10.3389/fpsyg.2015.00968 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Journal of Psychiatry, 165(8), 969-977.CrossRefPubMedGoogle Scholar
  8. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), 289-300.Google Scholar
  9. Birmaher, B., Khetarpal, S., Brent, D., Cully, M., Balach, L., Kaufman, J., & Neer, S. M. (1997). The screen for child anxiety related emotional disorders (SCARED): Scale construction and psychometric characteristics. Journal of the American Academy of Child & Adolescent Psychiatry, 36(4), 545-553.CrossRefGoogle Scholar
  10. Bishop, S. J. (2008). Neural mechanisms underlying selective attention to threat. Annals of the New York Academy of Sciences, 1129(1), 141-152.CrossRefPubMedGoogle Scholar
  11. Bishop, S. J., Duncan, J., Brett, M., & Lawrence, A. D. (2004). Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nature neuroscience, 7(2), 184-188.CrossRefPubMedGoogle Scholar
  12. Blair. (2006). How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. Behavioral and Brain Sciences, 29(2), 109-125.PubMedGoogle Scholar
  13. Blair, & Raver. (2012). Child development in the context of adversity: Experiential canalization of brain and behavior. American Psychologist, 67(4), 309.CrossRefPubMedGoogle Scholar
  14. Blakemore, S-J, Burnett, S., & Dahl, R. E. (2010). The role of puberty in the developing adolescent brain. Human Brain Mapping, 31(6), 926-933.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bloss, E. B., Janssen, W. G., McEwen, B. S., & Morrison, J. H. (2010). Interactive effects of stress and aging on structural plasticity in the prefrontal cortex. Journal of Neuroscience, 30(19), 6726-6731.CrossRefPubMedGoogle Scholar
  16. Brito, N. H., & Noble, K. G. (2014). Socioeconomic status and structural brain development. Frontiers in neuroscience, 8, 276.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Brooks-Gunn, J., & Duncan, G. J. (1997). The effects of poverty on children. The future of children, 55-71.Google Scholar
  18. Brown, G. W., & Moran, P. M. (1997). Single mothers, poverty and depression. Psychological Medicine, 27(1), 21-33.CrossRefPubMedGoogle Scholar
  19. Butterworth, P., Cherbuin, N., Sachdev, P., & Anstey, K. J. (2011). The association between financial hardship and amygdala and hippocampal volumes: Results from the PATH through life project. Social Cognitive and Affective Neuroscience, 7(5), 548-556.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Carlson, J. M., Reinke, K. S., & Habib, R. (2009). A left amygdala mediated network for rapid orienting to masked fearful faces. Neuropsychologia, 47(5), 1386-1389.CrossRefPubMedGoogle Scholar
  21. Cha, J., Greenberg, T., Song, I., Blair Simpson, H., Posner, J., & Mujica-Parodi, L. R. (2016). Abnormal hippocampal structure and function in clinical anxiety and comorbid depression. Hippocampus, 26(5), 545-553.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cisler, J. M., Bacon, A. K., & Williams, N. L. (2009). Phenomenological characteristics of attentional biases towards threat: A critical review. Cognitive therapy and research, 33(2), 221-234.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cisler, J. M., & Koster, E. H. (2010). Mechanisms of attentional biases towards threat in anxiety disorders: An integrative review. Clinical psychology review, 30(2), 203-216.CrossRefPubMedGoogle Scholar
  24. Conger, R. D., Conger, K. J., & Martin, M. J. (2010). Socioeconomic status, family processes, and individual development. Journal of Marriage and Family, 72(3), 685-704.Google Scholar
  25. Dalgleish, T., & Watts, F. N. (1990). Biases of attention and memory in disorders of anxiety and depression. Clinical Psychology Review, 10(5), 589-604.CrossRefGoogle Scholar
  26. Dannlowski, U., Stuhrmann, A., Beutelmann, V., Zwanzger, P., Lenzen, T., Grotegerd, D., . . . Bauer, J. (2012). Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biological psychiatry, 71(4), 286-293.Google Scholar
  27. Davidson, R. J., & McEwen, B. S. (2012). Social influences on neuroplasticity: stress and interventions to promote well-being. Nature neuroscience, 15(5), 689.CrossRefPubMedPubMedCentralGoogle Scholar
  28. De Bellis, M. D., Casey, B., Dahl, R. E., Birmaher, B., Williamson, D. E., Thomas, K. M., . . . Hall, J. (2000). A pilot study of amygdala volumes in pediatric generalized anxiety disorder. Biological psychiatry, 48(1), 51-57.Google Scholar
  29. De Voogd, E., Wiers, R., Prins, P., de Jong, P., Boendermaker, W., Zwitser, R., & Salemink, E. (2016). Online attentional bias modification training targeting anxiety and depression in unselected adolescents: Short-and long-term effects of a randomized controlled trial. Behaviour Research and Therapy, 87, 11-22.CrossRefPubMedGoogle Scholar
  30. Dia, D. A., & Bradshaw, W. (2008). Cognitive risk factors to the development of anxiety and depressive disorders in adolescents. Child and Adolescent Social Work Journal, 25(6), 469-481.CrossRefGoogle Scholar
  31. Ding, Y., Lawrence, N., Olie, E., Cyprien, F., Le Bars, E., Bonafe, A., . . . Jollant, F. (2015). Prefrontal cortex markers of suicidal vulnerability in mood disorders: a model-based structural neuroimaging study with a translational perspective. Translational psychiatry, 5(2), e516.Google Scholar
  32. Evans, G. W. (2004). The environment of childhood poverty. American Psychologist, 59(2), 77.CrossRefPubMedGoogle Scholar
  33. Evans, G. W., & English, K. (2002). The environment of poverty: Multiple stressor exposure, psychophysiological stress, and socioemotional adjustment. Child development, 73(4), 1238-1248.CrossRefPubMedGoogle Scholar
  34. Evans, G. W., & Kim, P. (2013). Childhood poverty, chronic stress, self-regulation, and coping. Child Development Perspectives, 7(1), 43-48.CrossRefGoogle Scholar
  35. Fani, N., Gutman, D., Tone, E. B., Almli, L., Mercer, K. B., Davis, J., . . . Dinov, I. D. (2013). FKBP5 and attention bias for threat: Associations with hippocampal function and shape. JAMA Psychiatry, 70(4), 392-400.Google Scholar
  36. Feng, X., Shaw, D. S., & Silk, J. S. (2008). Developmental trajectories of anxiety symptoms among boys across early and middle childhood. Journal of Abnormal Psychology, 117(1), 32.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., . . . Klaveness, S. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341-355.Google Scholar
  38. Fitzgerald, A., Rawdon, C., & Dooley, B. (2016). A randomized controlled trial of attention bias modification training for socially anxious adolescents. Behaviour research and therapy, 84, 1-8.CrossRefPubMedGoogle Scholar
  39. Fu, X., Taber-Thomas, B. C., & Pérez-Edgar, K. (2015). Frontolimbic functioning during threat-related attention: Relations to early behavioral inhibition and anxiety in children. Biological psychology.Google Scholar
  40. Gee, D. G., Gabard-Durnam, L. J., Flannery, J., Goff, B., Humphreys, K. L., Telzer, E. H., . . . Tottenham, N. (2013). Early developmental emergence of human amygdala–prefrontal connectivity after maternal deprivation. Proceedings of the National Academy of Sciences, 110(39), 15638-15643.Google Scholar
  41. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., . . . Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature neuroscience, 2(10), 861-863.Google Scholar
  42. Goldman, K. J., Shulman, C., Bar-Haim, Y., Abend, R., & Burack, J. A. (2016). Attention allocation to facial expressions of emotion among persons with Williams and Down syndromes. Development and Psychopathology, 1-9.Google Scholar
  43. Gray, S. C., Edwards, S. E., & Miranda, M. L. (2013). Race, socioeconomic status, and air pollution exposure in North Carolina. Environmental research, 126, 152-158.CrossRefPubMedGoogle Scholar
  44. Grupe, D. W., Wielgosz, J., Davidson, R. J., & Nitschke, J. B. (2016). Neurobiological correlates of distinct post-traumatic stress disorder symptom profiles during threat anticipation in combat veterans. Psychological medicine, 46(9), 1885-1895.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Guadalupe, T., Zwiers, M. P., Teumer, A., Wittfeld, K., Vasquez, A. A., Hoogman, M., . . . Hegenscheid, K. (2014). Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human brain mapping, 35(7), 3277-3289.Google Scholar
  46. Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., & Gur, R. E. (1999). Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. The Journal of Neuroscience, 19(10), 4065-4072.CrossRefPubMedGoogle Scholar
  47. Hackman, D. A., Farah, M. J., & Meaney, M. J. (2010). Socioeconomic status and the brain: Mechanistic insights from human and animal research. Nature Reviews Neuroscience, 11(9), 651.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hair, N. L., Hanson, J. L., Wolfe, B. L., & Pollak, S. D. (2015). Association of child poverty, brain development, and academic achievement. JAMA Pediatrics, 169(9), 822-829.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hall, B. S., Moda, R. N., & Liston, C. (2015). Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders. Neurobiology of Stress, 1, 174-183.CrossRefPubMedGoogle Scholar
  50. Hankin, B. L., Snyder, H. R., & Gulley, L.D. (2016). Cognitive risks in developmental psychopathology. Developmental Psychopathology, Maladaptation and Psychopathology, 3, 312.Google Scholar
  51. Hanson, J.L., Chandra, A., Wolfe, B.L., & Pollak, S.D. (2011). Association between income and the hippocampus. PloS one, 6(5), e18712.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hanson, J.L., Chung, M. K., Avants, B. B., Shirtcliff, E. A., Gee, J. C., Davidson, R. J., & Pollak, S. D. (2010). Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based morphometry investigation of brain structure and behavioral risk. Journal of Neuroscience, 30(22), 7466-7472.CrossRefPubMedGoogle Scholar
  53. Hanson, J.L., Hair, N., Shen, D. G., Shi, F., Gilmore, J. H., Wolfe, B. L., & Pollak, S. D. (2013). Family poverty affects the rate of human infant brain growth. PloS one, 8(12), e80954.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hanson, J.L., Nacewicz, B.M., Sutterer, M.J., Cayo, A. A., Schaefer, S. M., Rudolph, K. D., . . . Davidson, R. J. (2015). Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biological psychiatry, 77(4), 314-323.Google Scholar
  55. Hardee, J. E., Benson, B. E., Bar-Haim, Y., Mogg, K., Bradley, B. P., Chen, G., . . . Pine, D. S. (2013). Patterns of neural connectivity during an attention bias task moderate associations between early childhood temperament and internalizing symptoms in young adulthood. Biological psychiatry, 74(4), 273-279.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Harrell, F. E. (2001). Regression modeling strategies, with applications to linear models, survival analysis and logistic regression. GET ADDRESS: Springer.Google Scholar
  57. Hertzman, C. (1999). The biological embedding of early experience and its effects on health in adulthood. Annals of the New York Academy of Sciences, 896(1), 85-95.CrossRefPubMedGoogle Scholar
  58. Hoff-Ginsberg, E., & Tardif, T. (1995). Socioeconomic status and parenting.Google Scholar
  59. Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status affects early vocabulary development via maternal speech. Child Development, 74(5), 1368-1378.CrossRefPubMedGoogle Scholar
  60. Holland, P. C., & Gallagher, M. (1999). Amygdala circuitry in attentional and representational processes. Trends in cognitive sciences, 3(2), 65-73.CrossRefPubMedGoogle Scholar
  61. Holz, N. E., Boecker, R., Hohm, E., Zohsel, K., Buchmann, A. F., Blomeyer, D., . . . Wolf, I. (2015). The long-term impact of early life poverty on orbitofrontal cortex volume in adulthood: results from a prospective study over 25 years. Neuropsychopharmacology, 40(4), 996.Google Scholar
  62. Hutcheson, N. L., Clark, D. G., Bolding, M. S., White, D. M., & Lahti, A. C. (2014). Basal ganglia volume in unmedicated patients with schizophrenia is associated with treatment response to antipsychotic medication. Psychiatry Research: Neuroimaging, 221(1), 6-12.CrossRefPubMedGoogle Scholar
  63. Jednoróg, K., Altarelli, I., Monzalvo, K., Fluss, J., Dubois, J., Billard, C., . . . Ramus, F. (2012). The influence of socioeconomic status on children’s brain structure. PloS one, 7(8), e42486.Google Scholar
  64. Johnson, S.B., Riis, J.L., & Noble, K.G. (2016). State of the art review: Poverty and the developing brain. Pediatrics, 137(4), peds. 2015-3075.Google Scholar
  65. Kant, A. K., & Graubard, B. I. (2012). Race-ethnic, family income, and education differentials in nutritional and lipid biomarkers in US children and adolescents: NHANES 2003–2006. The American journal of clinical nutrition, ajcn. 035535.Google Scholar
  66. Kappenman, E. S., Farrens, J. L., Luck, S. J., & Proudfit, G. H. (2014). Behavioral and ERP measures of attentional bias to threat in the dot-probe task: Poor reliability and lack of correlation with anxiety. Front Psychol, 5, 1368.  https://doi.org/10.3389/fpsyg.2014.01368
  67. Kindt, M., Brosschot, J. F., & Everaerd, W. (1997). Cognitive processing bias of children in a real life stress situation and a neutral situation. Journal of Experimental Child Psychology, 64(1), 79-97.CrossRefPubMedGoogle Scholar
  68. Kindt, M., & Van Den Hout, M. (2001). Selective attention and anxiety: A perspective on developmental issues and the causal status. Journal of Psychopathology and Behavioral Assessment, 23(3), 193-202.CrossRefGoogle Scholar
  69. Koster, E. H., Crombez, G., Verschuere, B., & De Houwer, J. (2004). Selective attention to threat in the dot probe paradigm: Differentiating vigilance and difficulty to disengage. Behaviour research and therapy, 42(10), 1183-1192.CrossRefPubMedGoogle Scholar
  70. Lawson, G. M., Duda, J. T., Avants, B. B., Wu, J., & Farah, M. J. (2013). Associations between children's socioeconomic status and prefrontal cortical thickness. Developmental science, 16(5), 641-652.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Lipina, S., Segretin, S., Hermida, J., Prats, L., Fracchia, C., Camelo, J. L., & Colombo, J. (2013). Linking childhood poverty and cognition: environmental mediators of non-verbal executive control in an Argentine sample. Developmental science, 16(5), 697-707.CrossRefPubMedGoogle Scholar
  72. Liston, C., & Gan, W.-B. (2011). Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proceedings of the National Academy of Sciences, 108(38), 16074-16079.CrossRefGoogle Scholar
  73. Liu, J., & Lewis, G. (2014). Environmental toxicity and poor cognitive outcomes in children and adults. Journal of Environmental Health, 76(6), 130.PubMedPubMedCentralGoogle Scholar
  74. Luby, J., Belden, A., Botteron, K., Marrus, N., Harms, M. P., Babb, C., . . . Barch, D. (2013). The effects of poverty on childhood brain development: The mediating effect of caregiving and stressful life events. JAMA Pediatrics, 167(12), 1135-1142.Google Scholar
  75. MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835-1838.CrossRefPubMedGoogle Scholar
  76. Maren, S., Phan, K. L., & Liberzon, I. (2013). The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nature reviews neuroscience, 14(6), 417.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Mathews, A., & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review on Clinical Psychology, 1, 167-195.CrossRefGoogle Scholar
  78. Matlow, R., Gard, D., & Berg, D. (2012). Difficulty disengaging from threat in anxiety: Preliminary evidence for delayed response execution. Journal of Experimental Psychopathology, 3(3), 455-469.CrossRefGoogle Scholar
  79. Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological methods, 12(1), 23.CrossRefPubMedGoogle Scholar
  80. Maxwell, S. E., Cole, D. A., & Mitchell, M. A. (2011). Bias in cross-sectional analyses of longitudinal mediation: Partial and complete mediation under an autoregressive model. Multivariate Behavioral Research, 46(5), 816-841.CrossRefPubMedGoogle Scholar
  81. McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England journal of medicine, 338(3), 171-179.CrossRefPubMedGoogle Scholar
  82. McEwen, B. S. (2003). Mood disorders and allostatic load. Biological psychiatry, 54(3), 200-207.CrossRefPubMedGoogle Scholar
  83. McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological reviews, 87(3), 873-904.CrossRefPubMedGoogle Scholar
  84. McEwen, B. S. (2016). Stress-induced remodeling of hippocampal CA3 pyramidal neurons. Brain research, 1645, 50-54.CrossRefPubMedGoogle Scholar
  85. McEwen, B. S., Eiland, L., Hunter, R. G., & Miller, M. M. (2012). Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology, 62(1), 3-12.CrossRefPubMedGoogle Scholar
  86. McEwen, B. S., & Gianaros, P. J. (2010). Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences, 1186(1), 190-222.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Milad, M. R., & Quirk, G. J. (2012). Fear extinction as a model for translational neuroscience: Ten years of progress. Annual review of psychology, 63, 129-151.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Milham, M. P., Nugent, A. C., Drevets, W. C., Dickstein, D. S., Leibenluft, E., Ernst, M., . . . Pine, D. S. (2005). Selective reduction in amygdala volume in pediatric anxiety disorders: a voxel-based morphometry investigation. Biological psychiatry, 57(9), 961-966.Google Scholar
  89. Miller, G. E., Lachman, M. E., Chen, E., Gruenewald, T. L., Karlamangla, A. S., & Seeman, T. E. (2011). Pathways to resilience: Maternal nurturance as a buffer against the effects of childhood poverty on metabolic syndrome at midlife. Psychological science, 22(12), 1591-1599.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Mogg, Bradley, & Williams. (1995). Attentional bias in anxiety and depression: The role of awareness. British journal of clinical psychology, 34(1), 17-36.Google Scholar
  91. Monk, C.S., Nelson, McClure, Mogg, K., Bradley, B. P., Leibenluft, E., . . . Ernst, M. (2006). Ventrolateral prefrontal cortex activation and attentional bias in response to angry faces in adolescents with generalized anxiety disorder. American Journal of Psychiatry, 163(6), 1091-1097.Google Scholar
  92. Monk, C.S., Telzer, E.H., Mogg, K., Bradley, B. P., Mai, X., Louro, H. M., . . . Pine, D. S. (2008). Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Archives of general psychiatry, 65(5), 568-576.Google Scholar
  93. Najman, J. M., Hayatbakhsh, M. R., Clavarino, A., Bor, W., O'Callaghan, M. J., & Williams, G. M. (2010). Family poverty over the early life course and recurrent adolescent and young adult anxiety and depression: A longitudinal study. American Journal of Public Health, 100(9), 1719-1723.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Noble, K.G., Grieve, S. M., Korgaonkar, M. S., Engelhardt, L. E., Griffith, E. Y., Williams, L. M., & Brickman, A. M. (2012a). Hippocampal volume varies with educational attainment across the life-span. Frontiers in human neuroscience, 6, 307.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Noble, K.G., Houston, S.M., Brito, N.H., Bartsch, H., Kan, E., Kuperman, J.M., . . . Libiger, O. (2015). Family income, parental education and brain structure in children and adolescents. Nature neuroscience, 18(5), 773.Google Scholar
  96. Noble, K.G., Houston, S.M., Kan, E., & Sowell, E.R. (2012b). Neural correlates of socioeconomic status in the developing human brain. Developmental science, 15(4), 516-527.CrossRefPubMedGoogle Scholar
  97. Noble, K.G., Wolmetz, M. E., Ochs, L. G., Farah, M. J., & McCandliss, B. D. (2006). Brain–behavior relationships in reading acquisition are modulated by socioeconomic factors. Developmental science, 9(6), 642-654.CrossRefPubMedGoogle Scholar
  98. Oitzl, M. S., Champagne, D. L., van der Veen, R., & de Kloet, E. R. (2010). Brain development under stress: Hypotheses of glucocorticoid actions revisited. Neuroscience & Biobehavioral Reviews, 34(6), 853-866.CrossRefGoogle Scholar
  99. Pachter, L. M., Auinger, P., Palmer, R., & Weitzman, M. (2006). Do parenting and the home environment, maternal depression, neighborhood, and chronic poverty affect child behavioral problems differently in different racial-ethnic groups? Pediatrics, 117(4), 1329-1338.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Payne, C., Machado, C. J., Bliwise, N. G., & Bachevalier, J. (2010). Maturation of the hippocampal formation and amygdala in Macaca mulatta: A volumetric magnetic resonance imaging study. Hippocampus, 20(8), 922-935.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Peper, J.S., Pol, H.E., Crone, E.A., & Van Honk, J. (2011). Sex steroids and brain structure in pubertal boys and girls: A mini-review of neuroimaging studies. Neuroscience, 191, 28-37.CrossRefPubMedGoogle Scholar
  102. Pérez-Edgar, K., Bar-Haim, Y., McDermott, J. M., Chronis-Tuscano, A., Pine, D. S., & Fox, N. A. (2010a). Attention biases to threat and behavioral inhibition in early childhood shape adolescent social withdrawal. Emotion, 10(3), 349.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Pérez-Edgar, K., McDermott, J. N. M., Korelitz, K., Degnan, K. A., Curby, T. W., Pine, D. S., & Fox, N. A. (2010b). Patterns of sustained attention in infancy shape the developmental trajectory of social behavior from toddlerhood through adolescence. Developmental psychology, 46(6), 1723.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Pérez-Edgar, K., Reeb-Sutherland, B. C., McDermott, J. M., White, L. K., Henderson, H. A., Degnan, K. A., . . . Fox, N. A. (2011). Attention biases to threat link behavioral inhibition to social withdrawal over time in very young children. Journal of abnormal child psychology, 39(6), 885-895.Google Scholar
  105. Perry, R. E., Finegood, E. D., Braren, S. H., Dejoseph, M. L., Putrino, D. F., Wilson, D. A., . . . Investigators, F. L. P. K. (2018). Developing a neurobehavioral animal model of poverty: Drawing cross-species connections between environments of scarcity-adversity, parenting quality, and infant outcome. Development and psychopathology, 1-20.Google Scholar
  106. Pessoa, L. (2008). On the relationship between emotion and cognition. Nature reviews neuroscience, 9(2), 148.CrossRefPubMedGoogle Scholar
  107. Pessoa, L. (2013). The cognitive-emotional brain: From interactions to integration: MIT press.Google Scholar
  108. Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report measure of pubertal status: Reliability, validity, and initial norms. Journal of Youth and Adolescence, 17(2), 117-133.Google Scholar
  109. Pine, D.S. (2003). Developmental psychobiology and response to threats: Relevance to trauma in children and adolescents. Biological Psychiatry, 53(9), 796-808.CrossRefPubMedGoogle Scholar
  110. Pine, D.S. (2007). Research review: A neuroscience framework for pediatric anxiety disorders. Journal of Child Psychology and Psychiatry, 48(7), 631-648.CrossRefPubMedGoogle Scholar
  111. Pine, D.S., Mogg, K., Bradley, B. P., Montgomery, L., Monk, C. S., McClure, E., . . . Kaufman, J. (2005). Attention bias to threat in maltreated children: Implications for vulnerability to stress-related psychopathology. American Journal of Psychiatry, 162(2), 291-296.Google Scholar
  112. Pollak, & Tolley-Schell. (2003). Selective attention to facial emotion in physically abused children. Journal of abnormal psychology, 112(3), 323.CrossRefPubMedGoogle Scholar
  113. Price, R. B., Kuckertz, J. M., Siegle, G. J., Ladouceur, C. D., Silk, J. S., Ryan, N. D., . . . Amir, N. (2015). Empirical recommendations for improving the stability of the dot-probe task in clinical research. Psychol Assess, 27(2), 365-376.  https://doi.org/10.1037/pas0000036
  114. Price, Siegle, Silk, Ladouceur, C. D., McFarland, A., Dahl, R. E., & Ryan, N. D. (2014). Looking under the hood of the dot-probe task: An fMRI study in anxious youth. Depression and anxiety, 31(3), 178-187.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Price, Siegle, G. J., Silk, J. S., Ladouceur, C., McFarland, A., Dahl, R. E., & Ryan, N. D. (2013). Sustained neural alterations in anxious youth performing an attentional bias task: A pupilometry study. Depression and anxiety, 30(1), 22-30.CrossRefPubMedGoogle Scholar
  116. Puliafico, A. C., & Kendall, P. C. (2006). Threat-related attentional bias in anxious youth: A review. Clinical child and family psychology review, 9(3-4), 162-180.CrossRefPubMedGoogle Scholar
  117. Qiu, A., Crocetti, D., Adler, M., Mahone, E. M., Denckla, M. B., Miller, M. I., & Mostofsky, S. H. (2009). Basal ganglia volume and shape in children with attention deficit hyperactivity disorder. American Journal of Psychiatry, 166(1), 74-82.CrossRefPubMedGoogle Scholar
  118. Raver, C. C., Blair, C., & Garrett-Peters, P. (2015). Poverty, household chaos, and interparental aggression predict children's ability to recognize and modulate negative emotions. Development and psychopathology, 27(03), 695-708.CrossRefPubMedGoogle Scholar
  119. Raver, C. C., Roy, A. L., Pressler, E., Ursache, A. M., & Charles McCoy, D. (2016). Poverty-related adversity and emotion regulation predict internalizing behavior problems among low-income children ages 8–11. Behavioral Sciences, 7(1), 2.CrossRefPubMedCentralGoogle Scholar
  120. Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., . . . Acker, J. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral cortex, 15(11), 1676-1689.Google Scholar
  121. Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children: A volumetric imaging study. Brain, 119(5), 1763-1774.CrossRefPubMedGoogle Scholar
  122. Repetti, R. L., Taylor, S. E., & Seeman, T. E. (2002). Risky families: Family social environments and the mental and physical health of offspring. Psychological bulletin, 128(2), 330.CrossRefPubMedGoogle Scholar
  123. Revelle, W. (2014). psych: Procedures for psychological, psychometric, and personality research. Northwestern University, Evanston, Illinois, 165.Google Scholar
  124. Roy, Vasa, Bruck, M., Mogg, K., Bradley, B. P., Sweeney, M., . . . Pine, D. S. (2008). Attention bias toward threat in pediatric anxiety disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 47(10), 1189-1196.Google Scholar
  125. Salemink, E., van den Hout, M. A., & Kindt, M. (2007). Selective attention and threat: Quick orienting versus slow disengagement and two versions of the dot probe task. Behav Res Ther, 45(3), 607-615.  https://doi.org/10.1016/j.brat.2006.04.004 CrossRefPubMedGoogle Scholar
  126. Sampson, R. J., Raudenbush, S. W., & Earls, F. (1997). Neighborhoods and violent crime: A multilevel study of collective efficacy. Science, 277(5328), 918-924.CrossRefPubMedGoogle Scholar
  127. Sara, & Bouret, S. (2012). Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron, 76(1), 130-141.CrossRefPubMedGoogle Scholar
  128. Schmukle, S. C. (2005). Unreliability of the dot probe task. European Journal of Personality, 19(7), 595-605.  https://doi.org/10.1002/per.554 CrossRefGoogle Scholar
  129. Schneider, E., & Zuccoloto, A. (2007). E-prime 2.0 [Computer software]. Pittsburg PA: Psychological Software Tools.Google Scholar
  130. Shanahan, L., Calkins, S. D., Keane, S. P., Kelleher, R., & Suffness, R. (2014). Trajectories of internalizing symptoms across childhood: The roles of biological self-regulation and maternal psychopathology. Development and psychopathology, 26(4pt2), 1353-1368.CrossRefPubMedPubMedCentralGoogle Scholar
  131. Spence, S. H., Najman, J. M., Bor, W., O'callaghan, M. J., & Williams, G. M. (2002). Maternal anxiety and depression, poverty and marital relationship factors during early childhood as predictors of anxiety and depressive symptoms in adolescence. Journal of Child Psychology and Psychiatry, 43(4), 457-469.CrossRefPubMedGoogle Scholar
  132. Staff, R.T., Murray, A. D., Ahearn, T. S., Mustafa, N., Fox, H. C., & Whalley, L. J. (2012). Childhood socioeconomic status and adult brain size: Childhood socioeconomic status influences adult hippocampal size. Annals of neurology, 71(5), 653-660.CrossRefPubMedGoogle Scholar
  133. Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., . . . Bergmann, Ø. (2012). Identification of common variants associated with human hippocampal and intracranial volumes. Nature genetics, 44(5), 552-561.Google Scholar
  134. Sussman, E., Winkler, I., & Schröger, E. (2003). Top-down control over involuntary attention switching in the auditory modality. Psychonomic Bulletin & Review, 10(3), 630-637.CrossRefGoogle Scholar
  135. Taki, Y., Thyreau, B., Kinomura, S., Sato, K., Goto, R., Kawashima, R., & Fukuda, H. (2011). Correlations among brain gray matter volumes, age, gender, and hemisphere in healthy individuals, PLoS One, 6(7), e22734.CrossRefPubMedPubMedCentralGoogle Scholar
  136. Thai, N., Taber-Thomas, B. C., & Pérez-Edgar, K. E. (2016). Neural correlates of attention biases, behavioral inhibition, and social anxiety in children: An ERP study. Developmental Cognitive Neuroscience, 19, 200-210.CrossRefPubMedPubMedCentralGoogle Scholar
  137. Thapar, A., & Rutter, M. (2015). Using natural experiments and animal models to study causal hypotheses in relation to child mental health problems Rutter's child and adolescent psychiatry: John Wiley and Sons Limited, Oxford.Google Scholar
  138. Tottenham, Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., . . . Nelson, C. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Res, 168(3), 242-249.  https://doi.org/10.1016/j.psychres.2008.05.006
  139. Troller-Renfree, S., McDermott, J. M., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2015). The effects of early foster care intervention on attention biases in previously institutionalized children in Romania. Developmental science, 18(5), 713-722.CrossRefPubMedGoogle Scholar
  140. Uematsu, A., Matsui, M., Tanaka, C., Takahashi, T., Noguchi, K., Suzuki, M., & Nishijo, H. (2012). Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PloS one, 7(10), e46970.CrossRefPubMedPubMedCentralGoogle Scholar
  141. Vijayakumar, N., Whittle, S., Yücel, M., Dennison, M., Simmons, J., & Allen, N. B. (2014). Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females. Social cognitive and affective neuroscience, 9(11), 1845-1854.CrossRefPubMedPubMedCentralGoogle Scholar
  142. Voineskos, A. N., Winterburn, J. L., Felsky, D., Pipitone, J., Rajji, T. K., Mulsant, B. H., & Chakravarty, M. M. (2015). Hippocampal (subfield) volume and shape in relation to cognitive performance across the adult lifespan. Human brain mapping, 36(8), 3020-3037.CrossRefPubMedGoogle Scholar
  143. Wang, Braskie, M. N., Hafzalla, G. W., Faskowitz, J., McMahon, K. L., de Zubicaray, G. I., . . . Thompson, P. M. (2017). Relationship of a common OXTR gene variant to brain structure and default mode network function in healthy humans. NeuroImage, 147, 500-506.Google Scholar
  144. Wechsler, D. (1999). Wechsler abbreviated scale of intelligence: Psychological Corporation.Google Scholar
  145. Wechsler, D. (2014). Wechsler adult intelligence scale–Fourth Edition (WAIS–IV). San Antonio, Texas: Psychological Corporation.Google Scholar
  146. Welberg, L. A., & Seckl, J. R. (2001). Prenatal stress, glucocorticoids and the programming of the brain. Journal of neuroendocrinology, 13(2), 113-128.CrossRefPubMedGoogle Scholar
  147. Wilcox, R. R., & Tian, T. (2008). Comparing dependent correlations. The Journal of general psychology, 135(1), 105-112.CrossRefPubMedGoogle Scholar
  148. Wyciszkiewicz, A., & Pawlak, M. A. (2014). Basal ganglia volumes: MR-derived reference ranges and lateralization indices for children and young adults. The neuroradiology journal, 27(5), 595-612.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of DenverDenverUSA

Personalised recommendations