Value-driven attentional capture is modulated by the contents of working memory: An EEG study

  • T. HinaultEmail author
  • K. J. Blacker
  • M. Gormley
  • B. A. Anderson
  • S. M. Courtney


Attention and working memory (WM) have previously been shown to interact closely when sensory information is being maintained. However, when non-sensory information is maintained in WM, the relationship between WM and sensory attention may be less strong. In the current study, we used electroencephalography to evaluate whether value-driven attentional capture (i.e., allocation of attention to a task-irrelevant feature previously associated with a reward) and its effects on either sensory or non-sensory WM performance might be greater than the effects of salient, non-reward-associated stimuli. In a training phase, 19 participants learned to associate a color with reward. Then, participants were presented with squares and encoded their locations into WM. Participants were instructed to convert the spatial locations either to another type of sensory representation or to an abstract, relational type of representation. During the WM delay period, task-irrelevant distractors, either previously-rewarded or non-rewarded, were presented, with a novel color distractor in the other hemifield. The results revealed lower alpha power and larger N2pc amplitude over posterior electrode sides contralateral to the previously rewarded color, compared to ipsilateral. These effects were mainly found during relational WM, compared to sensory WM, and only for the previously rewarded distractor color, compared to a previous non-rewarded target color or novel color. These effects were associated with modulations of WM performance. These results appear to reflect less capture of attention during maintenance of specific location information, and suggest that value-driven attentional capture can be mitigated as a function of the type of information maintained in WM.


EEG Working memory Alpha power Value Attentional capture 



This work was supported by a Johns Hopkins Science of Learning Institute Fellowship to KJB, and by NIH grant RO1-DA013165 to S.M.C.


  1. Abdi, H. (2007). Bonferroni and Šidák corrections for multiple comparisons. Encyclopedia of Measurement and Statistics, 3, 103–107. doi: Scholar
  2. Andersen, A., R., Snyder, L., H., Bradley, D., C., & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience, 20(1), 303–330. doi:
  3. Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367–10371. doi: CrossRefGoogle Scholar
  4. Anderson, B. A., Laurent, P. A., & Yantis, S. (2012). Generalization of value-based attentional priority. Visual Cognition, 20, 647-658.CrossRefGoogle Scholar
  5. Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision, 13(3):7, 1-16.Google Scholar
  6. Anderson, B. A. (2015). Value-driven attentional priority is context specific. Psychonomic Bulletin & Review, 22(3), 750–756. doi: CrossRefGoogle Scholar
  7. Anderson, B. A. (2016). The attention habit: How reward learning shapes attentional selection. Annals of the New York Academy of Sciences, 1369, 24-39.CrossRefGoogle Scholar
  8. Anderson, B. A., Kuwabara, H., Wong, D. F., Gean, E. G., Rahmim, A., Brasic, J. R., George, N., Frolov, B., Courtney, S. M., & Yantis, S. (2016). The role of dopamine in value-based attentional orienting. Current Biology, 26, 550-555.CrossRefGoogle Scholar
  9. Anderson, B. A., Kuwabara, H., Wong, D. F., Roberts, J., Rahmim, A., Brasic, J. R., & Courtney, S. M. (2017). Linking dopaminergic reward signals to the development of attentional bias: A positron emission tomographic study. NeuroImage, 157, 27-33.CrossRefGoogle Scholar
  10. Anderson, B. A., & Halpern, M. (2017). On the value-dependence of value-driven attentional capture. Attention, Perception, & Psychophysics, 79(4), 1001–1011. doi: CrossRefGoogle Scholar
  11. Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 780–790. doi: Google Scholar
  12. Baddeley, A.D. (2007). Working memory, thought and action. Oxford, UK: Oxford Univ. Press. doi: CrossRefGoogle Scholar
  13. Baddeley, A., Allen, R., & Hitch, G. (2010). Investigating the episodic buffer. Psychologica Belgica, 50(3–4). doi:
  14. Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology. General, 133(1), 83–100. doi: CrossRefGoogle Scholar
  15. Barrouillet, P., & Camos, V. (2010). Working memory and executive control: A time-based resource-sharing account. Psychologica Belgica, 50(3–4). doi:
  16. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300.CrossRefGoogle Scholar
  17. Blacker, K. J., & Courtney, S. M. (2016). Distinct neural substrates for maintaining locations and spatial relations in working memory. Frontiers in Human Neuroscience, 10. doi:
  18. Blacker, K. J., Ikkai, A., Lakshmanan, B. M., Ewen, J. B., & Courtney, S. M. (2016). The role of alpha oscillations in deriving and maintaining spatial relations in working memory. Cognitive, Affective, & Behavioral Neuroscience, 16(5), 888–901. doi: CrossRefGoogle Scholar
  19. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433 – 436.CrossRefGoogle Scholar
  20. Capotosto, P., Babiloni, C., Romani, G. L., & Corbetta, M. (2009). Fronto-parietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(18), 5863–5872. doi: CrossRefGoogle Scholar
  21. Courtney, S. M. (2004). Attention and cognitive control as emergent properties of information representation in working memory. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 501–516. doi: CrossRefGoogle Scholar
  22. D’Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: Evidence from event-related fMRI studies. Experimental Brain Research, 133(1), 3–11. doi: CrossRefGoogle Scholar
  23. Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalogr. Clin. Neurophysiol. 99, 225–234.CrossRefGoogle Scholar
  24. Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. J. Cogn. Neurosci. 20, 1423–1433.CrossRefGoogle Scholar
  25. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi:10.3758/BF03193146Google Scholar
  26. Fougnie, D. (2008). The relationship between attention and working memory. In New research on short-term memory. NB Johansen (Ed.). Nova Science Publishers: New York.Google Scholar
  27. Harris, A. M., Dux, P. E., Jones, C. N., & Mattingley, J. B. (2017). Distinct roles of theta and alpha oscillations in the involuntary capture of goal-directed attention. NeuroImage, 152, 171–183. doi: CrossRefGoogle Scholar
  28. Hickey, C., McDonald, J.J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. J. Cogn. Neurosci. 18, 604–613.CrossRefGoogle Scholar
  29. Hinault, T., & Lemaire, P. (2016). Adaptive strategic variations in human cognition across the life span. Journal of Education and Training, 3(1), 189–198. doi: CrossRefGoogle Scholar
  30. Hinault, T., & Lemaire, P. (2017). Aging, rule-violation checking strategies, and strategy combination: An EEG study in arithmetic. International Journal of Psychophysiology, 120, 23–32. doi: CrossRefGoogle Scholar
  31. Hinault, T., Lemaire, P., & Phillips, N. (2016). Aging and sequential modulations of poorer strategy effects: An EEG study in arithmetic problem solving. Brain Research, 1630, 144–158. doi: CrossRefGoogle Scholar
  32. Ikkai, A., Blacker, K. J., Lakshmanan, B. M., Ewen, J. B., & Courtney, S. M. (2014). Maintenance of relational information in working memory leads to suppression of the sensory cortex. Journal of Neurophysiology, 112(8), 1903–1915. doi: CrossRefGoogle Scholar
  33. Itthipuripat, S., Cha, K., Rangsipat, N., & Serences, J. T. (2015). Value-based attentional capture influences context-dependent decision-making. Journal of Neurophysiology, 114(1), 560–569. doi: CrossRefGoogle Scholar
  34. Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877 – 882.CrossRefGoogle Scholar
  35. Jensen O., Bonnefond M., & VanRullen R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends Cogn Sci, 16, 200–206. doi: CrossRefGoogle Scholar
  36. Johnston, W. A., Hawley, K. J., Plewe, S. H., Elliott, J. M. G., & DeWitt, M. J. (1990). Attention capture by novel stimuli. Journal of Experimental Psychology: General, 119, 397-411.CrossRefGoogle Scholar
  37. Johnston, W. A., & Schwarting, I. S. (1997). Novel popout: An enigma for conventional theories of attention. Journal of Experimental Psychology: Human Perception and Performance, 23, 622-631.Google Scholar
  38. Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception & Psychophysics, 43(4), 346–354. doi: CrossRefGoogle Scholar
  39. Keehn, B., Westerfield, M., Müller, R.-A., & Townsend, J. (2017). Autism, attention, and alpha oscillations: An electrophysiological study of attentional capture. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(6), 528–536. doi: Google Scholar
  40. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews, 29(2–3), 169–195.CrossRefGoogle Scholar
  41. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition–timing hypothesis. Brain Research Reviews, 53(1), 63–88. doi: CrossRefGoogle Scholar
  42. Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606–617. doi: CrossRefGoogle Scholar
  43. Kumar, S., Soto, D., & Humphreys, G. W. (2009). Electrophysiological evidence for attentional guidance by the contents of working memory. European Journal of Neuroscience, 30(2), 307–317. doi: CrossRefGoogle Scholar
  44. Kumar, S., Higgs, S., Rutters, F., & Humphreys, G. W. (2016). Biased towards food: Electrophysiological evidence for biased attention to food stimuli. Brain and Cognition, 110, 85–93. doi: CrossRefGoogle Scholar
  45. Le Pelley, M. E., Pearson, D., Porter, A., Yee, H., & Luque, D. (2018). Oculomotor capture is influenced by expected reward value but (maybe) not predictiveness. Quarterly Journal of Experimental Psychology, 17470218.2017.1. doi:
  46. Luck, S. J. (2012). Electrophysiological correlates of the focusing of attention within complex visual scenes: N2pc and related ERP components. In S. J. Luck & E. S. Kappenman (Eds.), Oxford handbook of ERP components. New York: Oxford University Press.Google Scholar
  47. Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology. Human Perception and Performance, 20(5), 1000–1014.CrossRefGoogle Scholar
  48. Luck, S. J., & Ford, M. A. (1998). On the role of selective attention in visual perception. Proceedings of the National Academy of Sciences, 95, 825–830.CrossRefGoogle Scholar
  49. MacLean, M. H., & Giesbrecht, B. (2015). Neural evidence reveals the rapid effects of reward history on selective attention. Brain Research, 1606, 86–94. doi: CrossRefGoogle Scholar
  50. Maddux, J.-M., Kerfoot, E. C., Chatterjee, S., & Holland, P. C. (2007). Dissociation of attention in learning and action: Effects of lesions of the amygdala central nucleus, medial prefrontal cortex, and posterior parietal cortex. Behavioral Neuroscience, 121(1), 63–79. doi: CrossRefGoogle Scholar
  51. Makovski, T., Swallow, K. M., & Jiang, Y. V. (2011). Attending to unrelated targets boosts short-term memory for color arrays. Neuropsychologia, 49(6), 1498–1505. doi: CrossRefGoogle Scholar
  52. Marchner, J. R., & Preuschhof, C. (2018). Reward history but not search history explains value-driven attentional capture. Attention, Perception & Psychophysics. doi:
  53. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190. doi: CrossRefGoogle Scholar
  54. Mazza, V., Turatto, M., & Caramazza, A. (2009). Attention selection, distractor suppression and N2pc. Cortex, 45(7), 879–890. doi: CrossRefGoogle Scholar
  55. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81-97. doi: CrossRefGoogle Scholar
  56. Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E., Krawitz, A., & Jonides, J. (2013). A meta-analysis of executive components of working memory. Cerebral Cortex, 23(2), 264–282. doi: CrossRefGoogle Scholar
  57. Neo, G., & Chua, F. K. (2006). Capturing focused attention. Perception and Psychophysics, 68, 1286-1296.CrossRefGoogle Scholar
  58. Noonan, M. P., Adamian, N., Pike, A., Printzlau, F., Crittenden, B. M., & Stokes, M. G. (2016). Distinct mechanisms for distractor suppression and target facilitation. The Journal of Neuroscience, 36(6), 1797–1807. doi: CrossRefGoogle Scholar
  59. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1–9. doi: CrossRefGoogle Scholar
  60. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437 – 442.CrossRefGoogle Scholar
  61. Postle, B.,R., & Hamidi, M. (2007). Nonvisual codes and nonvisual brain areas support visual working memory. Cerebral Cortex, 17, 2151–2162. doi: CrossRefGoogle Scholar
  62. Qi, S., Zeng, Q., Ding, C., & Li, H. (2013). Neural correlates of reward-driven attentional capture in visual search. Brain Research, 1532, 32–43. doi: CrossRefGoogle Scholar
  63. Rutherford, H. J. V., O’Brien, J. L., & Raymond, J. E. (2010). Value associations of irrelevant stimuli modify rapid visual orienting. Psychonomic Bulletin & Review, 17(4), 536–542. doi: CrossRefGoogle Scholar
  64. Sala, J.B., & Courtney, S. M. (2009). Flexible working memory representations of the relationships between an object and its location as revealed by interactions with attention. Attention, Perception, & Psychophysics, 71(7), 1525-33. doi: Scholar
  65. Sawaki, R., & Luck, S. J. (2013). Active suppression after involuntary capture of attention. Psychonomic Bulletin & Review, 20(2), 296–301. doi: CrossRefGoogle Scholar
  66. Sokhadze, E. M., El-Baz, A., Baruth, J., Mathai, G., Sears, L., & Casanova, M. F. (2009). Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. Journal of Autism and Developmental Disorders, 39(4), 619–634. doi: CrossRefGoogle Scholar
  67. Sha, L. Z., & Jiang, Y. V. (2016). Components of reward-driven attentional capture. Attention, Perception, & Psychophysics, 78(2), 403–414. doi: CrossRefGoogle Scholar
  68. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, 1–13. doi: CrossRefGoogle Scholar
  69. Töllner, T., Müller, H. J., & Zehetleitner, M. (2012). Top-down dimensional weight set determines the capture of visual attention: Evidence from the PCN component. Cerebral Cortex, 22 (7), 1554-1563.CrossRefGoogle Scholar
  70. Unsworth, N., & Robison, M. K. (2016). The influence of lapses of attention on working memory capacity. Memory & Cognition, 44(2), 188–196. doi: CrossRefGoogle Scholar
  71. van Diepen, R. M., Miller, L. M., Mazaheri, A., & Geng, J. J. (2016). The role of alpha activity in spatial and feature-based attention. eNeuro, 3(5), ENEURO.0204-16.2016. doi: Google Scholar
  72. van Dijk, H., van der Werf, J., Mazaheri, A., Medendorp, W. P., & Jensen, O. (2010). Modulations in oscillatory activity with amplitude asymmetry can produce cognitively relevant event-related responses. Proceedings of the National Academy of Sciences, 107(2), 900–905. doi: CrossRefGoogle Scholar
  73. Vandierendonck, A. (2016). A working memory system with distributed executive control. Perspectives on Psychological Science, 11(1), 74–100. doi: CrossRefGoogle Scholar
  74. Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400: 867–869.CrossRefGoogle Scholar
  75. Wykowska, A., & Schubö, A. (2009). On the temporal relation of top–down and bottom–up mechanisms during guidance of attention. Journal of Cognitive Neuroscience, 22(4), 640–654. doi: CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreUSA
  2. 2.The Henry M. Jackson Foundation for the Advancement of Military Medicine, IncBethesdaUSA
  3. 3.Department of Psychological and Brain SciencesTexas A&M UniversityCollege StationUSA
  4. 4.Department of NeuroscienceJohns Hopkins UniversityBaltimoreUSA
  5. 5.F.M. Kirby Research CenterKennedy Krieger InstituteBaltimoreUSA

Personalised recommendations