Advertisement

Deactivation of default-mode network and early suppression of decision-making areas during retrieval period by high-arousing emotions improves performance in verbal working memory task

  • Nishi Pegwal
  • Anita Pal
  • Ratna SharmaEmail author
Article
  • 102 Downloads

Abstract

Emotions affect many aspects of cognition (attention, decision-making, problem solving, conflict resolution, task switching, social cognition, etc.), but the cortical areas or networks through which these effects are achieved are still debatable. In the present study, the effect of emotion on cognition was studied in healthy young individuals (n = 56). Emotions were induced using high-arousing negative, positive, and low-arousing neutral pictures from the International Affective Picture System (IAPS). Sternberg’s verbal working memory task was administered at baseline and after each emotion exposure, while high-density EEG was recorded. Cortical sources were calculated using sLORETA in the 500-ms window (for every 100 ms bin) before the response and were compared with baseline. Though the number of correct responses were comparable, reaction times after emotion exposure reduced significantly. Source analysis revealed significant deactivation of default mode network (DMN) areas as well as early deactivation of decision-making areas during Sternberg’s task performed after both the negative and positive emotions. This early deactivation, much before the response was made, when compared with baseline suggests that tasks performed under high-arousing emotional states may help in making decisions earlier or faster. We conclude that the exposure to high-arousing emotional stimuli improves verbal working memory by helping in directing the attentional resources toward the task, thus decreasing the decision-making time and further suppressing the DMN areas.

Keywords

Emotion IAPS Sternberg’s verbal working memory task sLORETA DMN 

Notes

Acknowledgements

We thank all the subjects who participated in the study.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Financial support

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Supplementary material

13415_2018_661_MOESM1_ESM.docx (6.2 mb)
ESM 1 (DOCX 6374 kb)
13415_2018_661_MOESM2_ESM.docx (16 kb)
ESM 2 (DOCX 15 kb)

References

  1. Boisgueheneuc, F. D., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S., … Dubois, B. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain, 129(12), 3315–3328.Google Scholar
  2. Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H. J., & Rizzolatti, G. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42(2), 323–334.Google Scholar
  3. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124(1), 1–38.Google Scholar
  4. Chouinard, P. A., & Paus, T. (2010). What have we learned from “perturbing” the human cortical motor system with transcranial magnetic stimulation?. Frontiers in Human Neuroscience, 4, 173.Google Scholar
  5. Connolly, J. D., Goodale, M. A., Desouza, J. F., Menon, R. S., Vilis, T., Medical Research Council Group for Action and Perception. (2000). A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. Journal of Neurophysiology, 84(3), 1645–1655.Google Scholar
  6. Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324.Google Scholar
  7. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.Google Scholar
  8. Esslen, M., Pascual-Marqui, R. D., Hell, D., Kochi, K., & Lehmann, D. (2004). Brain areas and time course of emotional processing. NeuroImage, 21(4), 1189–1203.Google Scholar
  9. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences, 103(26), 10046–10051.Google Scholar
  10. Gerlach, C., Aaside, C. T., Humphreys, G. W., Gade, A., Paulson, O. B., & Law, I. (2002). Brain activity related to integrative processes in visual object recognition: Bottom-up integration and the modulatory influence of stored knowledge. Neuropsychologia, 40(8), 1254–1267.Google Scholar
  11. Grafton, S. T., Fagg, A. H., Woods, R. P., & Arbib, M. A. (1996). Functional anatomy of pointing and grasping in humans. Cerebral Cortex, 6(2), 226–237.Google Scholar
  12. Grefkes, C., Ritzl, A., Zilles, K., & Fink, G. R. (2004). Human medial intraparietal cortex subserves visuomotor coordinate transformation. NeuroImage, 23(4), 1494–1506.Google Scholar
  13. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253–258.Google Scholar
  14. Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience, 2(10), 685.Google Scholar
  15. Hanakawa, T., Immisch, I., Toma, K., Dimyan, M. A., Van Gelderen, P., & Hallett, M. (2003). Functional properties of brain areas associated with motor execution and imagery. Journal of Neurophysiology, 89(2), 989–1002.Google Scholar
  16. Holmes, A. P., Blair, R. C., Watson, J. D. G., & Ford, I. (1996). Nonparametric analysis of statistic images from functional mapping experiments. Journal of Cerebral Blood Flow & Metabolism, 16(1), 7–22.Google Scholar
  17. Huijbers, W., Pennartz, C. M., Cabeza, R., & Daselaar, S. M. (2011). The hippocampus is coupled with the default network during memory retrieval but not during memory encoding. PLOS ONE, 6(4), e17463.Google Scholar
  18. Japee, S., Holiday, K., Satyshur, M. D., Mukai, I., & Ungerleider, L. G. (2015). A role of right middle frontal gyrus in reorienting of attention: A case study. Frontiers in Systems Neuroscience, 9, 23.Google Scholar
  19. Johnson, S. H., Rotte, M., Grafton, S. T., Hinrichs, H., Gazzaniga, M. S., & Heinze, H. J. (2002). Selective activation of a parietofrontal circuit during implicitly imagined prehension. NeuroImage, 17(4), 1693–1704.Google Scholar
  20. Kensinger, E. A., & Schacter, D. L. (2006). Processing emotional pictures and words: Effects of valence and arousal. Cognitive, Affective, & Behavioral Neuroscience, 6(2), 110–126.Google Scholar
  21. Kjaer, T. W., Nowak, M., & Lou, H. C. (2002). Reflective self-awareness and conscious states: PET evidence for a common midline parietofrontal core. NeuroImage, 17(2), 1080–1086.Google Scholar
  22. Knauff, M., Mulack, T., Kassubek, J., Salih, H. R., & Greenlee, M. W. (2002). Spatial imagery in deductive reasoning: A functional MRI study. Cognitive Brain Research, 13(2), 203–212.Google Scholar
  23. Lang, P. J, Bradley, M. M., & Cuthbert, B. N. (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual (Technical Report). Gainesville: National Institute of Mental Health Center for the Study of Emotion and Attention.Google Scholar
  24. Lundstrom, B. N., Petersson, K. M., Andersson, J., Johansson, M., Fransson, P., & Ingvar, M. (2003). Isolating the retrieval of imagined pictures during episodic memory: Activation of the left precuneus and left prefrontal cortex. NeuroImage, 20(4), 1934–1943.Google Scholar
  25. Martino, J., Gabarrós, A., Deus, J., Juncadella, M., Acebes, J. J., Torres, A., & Pujol, J. (2011). Intrasurgical mapping of complex motor function in the superior frontal gyrus. Neuroscience, 179, 131–142.Google Scholar
  26. McCormick, C., Moscovitch, M., Protzner, A. B., Huber, C. G., & McAndrews, M. P. (2010). Hippocampal–neocortical networks differ during encoding and retrieval of relational memory: functional and effective connectivity analyses. Neuropsychologia, 48(11), 3272–3281.Google Scholar
  27. Morris, J. S., Öhman, A., & Dolan, R. J. (1999). A subcortical pathway to the right amygdala mediating “unseen” fear. Proceedings of the National Academy of Sciences, 96(4), 1680–1685.Google Scholar
  28. Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9(11), 856.Google Scholar
  29. Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1–25.Google Scholar
  30. Öhman, A., Flykt, A., & Esteves, F. (2001a). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology: General, 130(3), 466.Google Scholar
  31. Öhman, A., Lundqvist, D., & Esteves, F. (2001b). The face in the crowd revisited: A threat advantage with schematic stimuli. Journal of Personality and Social Psychology, 80(3), 381.Google Scholar
  32. Owen, A. M. (2000). The role of the lateral frontal cortex in mnemonic processing: The contribution of functional neuroimaging. Experimental Brain Research, 133(1), 33–43.Google Scholar
  33. Owen, A. M., Stern, C. E., Look, R. B., Tracey, I., Rosen, B. R., & Petrides, M. (1998). Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proceedings of the National Academy of Sciences, 95(13), 7721–7726.Google Scholar
  34. Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24(Suppl. D), 5–12.Google Scholar
  35. Pessoa, L. (2005). To what extent are emotional visual stimuli processed without attention and awareness?. Current Opinion in Neurobiology, 15(2), 188–196.Google Scholar
  36. Pessoa, L., McKenna, M., Gutierrez, E., & Ungerleider, L. G. (2002). Neural processing of emotional faces requires attention. Proceedings of the National Academy of Sciences, 99(17), 11458–11463.Google Scholar
  37. Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research, 133(1), 44–54.Google Scholar
  38. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676–682.Google Scholar
  39. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 1.Google Scholar
  40. Seitz, R. J., & Binkofski, F. (2003). Modular organization of parietal lobe functions as revealed by functional activation studies. Advances in Neurology, 93, 281.Google Scholar
  41. Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & Petersen, S. E. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9(5), 648–663.Google Scholar
  42. Sreenivas, S., Boehm, S. G., & Linden, D. E. J. (2012). Emotional faces and the default mode network. Neuroscience Letters, 506(2), 229–234.Google Scholar
  43. Stephan, K. M., Fink, G. R., Passingham, R. E., Silbersweig, D., Ceballos-Baumann, A. O., Frith, C. D., & Frackowiak, R. S. (1995). Functional anatomy of the mental representation of upper extremity movements in healthy subjects. Journal of Neurophysiology, 73(1), 373–386.Google Scholar
  44. Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652–654.Google Scholar
  45. Vannini, P., O’Brien, J., O’Keefe, K., Pihlajamäki, M., Laviolette, P., & Sperling, R. A. (2010). What goes down must come up: Role of the posteromedial cortices in encoding and retrieval. Cerebral Cortex, 21(1), 22–34.Google Scholar
  46. Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9(12), 585-594.Google Scholar
  47. Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron, 30(3), 829–841.Google Scholar
  48. Ward, A. M., Schultz, A. P., Huijbers, W., Van Dijk, K. R., Hedden, T., & Sperling, R. A. (2014). The parahippocampal gyrus links the default-mode cortical network with the medial temporal lobe memory system. Human Brain Mapping, 35(3), 1061–1073.Google Scholar
  49. Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., & Jenike, M. A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. Journal of Neuroscience, 18(1), 411–418.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.PhysiologyAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations