A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive–compulsive disorder: Mapping the way forward

  • Geoffrey de Brouwer
  • Arina Fick
  • Brian H. Harvey
  • De Wet WolmaransEmail author
Theoretical Review


Rodent marble-burying behavior in the marble-burying test (MBT) is employed as a model or measure to study anxiety- and compulsive-like behaviors or anxiolytic and anticompulsive drug action. However, the test responds variably to a range of pharmacological interventions, and little consensus exists regarding specific methodologies for its execution. Regardless, the test is widely applied to investigate the effects of pharmacological, genetic, and behavioral manipulations on purported behaviors related to the said neuropsychiatric constructs. Therefore, in the present review we attempt to expound the collective translational significance of the MBT. We do this by (1) reviewing burying behavior as a natural behavioral phenotype, (2) highlighting key aspects of anxiety and obsessive–compulsive disorder from a translational perspective, (3) reviewing the history and proof of concept of the MBT, (4) critically appraising potential methodological confounds in execution of the MBT, and (5) dissecting responses of the MBT to various pharmacological interventions. We conclude by underlining that the collective translational value of the MBT will be strengthened by contextually valid experimental designs and objective reporting of data.


Marble-burying test Validity Methodology Review Anxiety Obsessive–compulsive disorder Animal model 


Author note

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflicts of interest.

Supplementary material

13415_2018_653_Fig1_ESM.png (8.6 mb)
Supplementary Fig. 1

(PNG 8760 kb)

13415_2018_653_MOESM1_ESM.tif (1.8 mb)
High resolution image (TIF 1854 kb)
13415_2018_653_Fig2_ESM.png (2.4 mb)
Supplementary Fig. 2

(PNG 2407 kb)

13415_2018_653_MOESM2_ESM.tif (619 kb)
High resolution image (TIF 619 kb)
13415_2018_653_Fig3_ESM.png (3.6 mb)
Supplementary Fig. 3

(PNG 3681 kb)

High resolution image (TIF 921 kb)
13415_2018_653_MOESM4_ESM.xlsx (61 kb)
ESM 1 (XLSX 60 kb)


  1. Abe, M., Nakai, H., Tabata, R., Saito, K. I., & Egawa, M. (1998). Effect of 5-{3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]propoxy}-1,3-benzodioxole HCl (MKC-242), a novel 5-HT(1A)-receptor agonist, on aggressive behavior and marble burying behavior in mice. Japanese Journal of Pharmacology, 76, 297–304. CrossRefPubMedGoogle Scholar
  2. Abramowitz, J. S., & Jacoby, R. J. (2015). Obsessive-compulsive and related disorders: A critical review of the new diagnostic class. Annual Review of Clinical Psychology, 11, 165–186.CrossRefPubMedGoogle Scholar
  3. Abramowitz, J. S., Taylor, S., & McKay, D. (2009). Obsessive-compulsive disorder. Lancet, 374, 491–499. CrossRefPubMedGoogle Scholar
  4. Adams, N., & Boice, R. (1981). Mouse (Mus) burrows: Effects of age, strain, and domestication. Learning & Behavior, 9, 140–144.CrossRefGoogle Scholar
  5. Ahmari, S. E. (2016). Using mice to model Obsessive Compulsive Disorder: From genes to circuits. Neuroscience, 321, 121–137. CrossRefPubMedGoogle Scholar
  6. Albelda, N., & Joel, D. (2012a). Animal models of obsessive–compulsive disorder: Exploring pharmacology and neural substrates. Neuroscience & Biobehavioral Reviews, 36, 47–63.CrossRefGoogle Scholar
  7. Albelda, N., & Joel, D. (2012b). Current animal models of obsessive compulsive disorder: An update. Neuroscience, 211, 83–106.CrossRefPubMedGoogle Scholar
  8. Alkhatib, A. H., Dvorkin-Gheva, A., & Szechtman, H. (2013). Quinpirole and 8-OH-DPAT induce compulsive checking behavior in male rats by acting on different functional parts of an OCD neurocircuit. Behavioural Pharmacology, 24, 65–73.CrossRefPubMedGoogle Scholar
  9. Alonso, P., Lopez-Sola, C., Real, E., Segalas, C., & Menchon, J. M. (2015). Animal models of obsessive–compulsive disorder: Utility and limitations. Neuropsychiatric Disease and Treatment, 11, 1939–1955. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ambrósio, A. F., Soares-da-Silva, P., Carvalho, C. M., & Carvalho, A. P. (2002). Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochemical Research, 27, 121–130.CrossRefPubMedGoogle Scholar
  11. Ameri, A. (1999). The effects of cannabinoids on the brain. Progress in Neurobiology, 58, 315–348.CrossRefPubMedGoogle Scholar
  12. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders DSM-IV (Rev. 4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  13. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-V (5th ed). Washington, DC: American Psychiatric Association.CrossRefGoogle Scholar
  14. Angoa-Pérez, M., Kane, M. J., Briggs, D. I., Francescutti, D. M., & Kuhn, D. M. (2013). Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. Journal of Visualized Experiments, 82, 50978. CrossRefGoogle Scholar
  15. Badgujar, B., & Surana, J. (2010). Anxiolytic effects of Dolichandrone falcata Seem., Bignoniaceae, stem-bark in elevated plus maze and marble burying test on mice. Brazilian Journal of Pharmacognosy, 20, 773–780. CrossRefGoogle Scholar
  16. Balemans, M. C. M., Huibers, M. M. H., Eikelenboom, N. W. D., Kuipers, A. J., van Summeren, R. C. J., Pijpers, M. M. C. A., ... Van der Zee, C. E. E. M. (2010). Reduced exploration, increased anxiety, and altered social behavior: Autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behavioural Brain Research, 208, 47–55.
  17. Bandelow, B., Sher, L., Bunevicius, R., Hollander, E., Kasper, S., Zohar, J., & Möller, H.-J. (2012). Guidelines for the pharmacological treatment of anxiety disorders, obsessive–compulsive disorder and posttraumatic stress disorder in primary care. International Journal of Psychiatry in Clinical Practice, 16, 77–84.CrossRefPubMedGoogle Scholar
  18. Bandelow, B., Zohar, J., Hollander, E., Kasper, S., Möller, H.-J., Bandelow, B., ... Kasper, S. (2008). World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of anxiety, obsessive–compulsive and post-traumatic stress disorders—First revision. World Journal of Biological Psychiatry, 9, 248–312.Google Scholar
  19. Bartz, J. A., & Hollander, E. (2006). Is obsessive–compulsive disorder an anxiety disorder? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30, 338–352. CrossRefPubMedGoogle Scholar
  20. Bechard, A., & Lewis, M. (2012). Modeling restricted repetitive behavior in animals. Autism: Open Access, S1, 6. CrossRefGoogle Scholar
  21. Bergink, V., van Megen, H. J., & Westenberg, H. G. (2004). Glutamate and anxiety. European Neuropsychopharmacology, 14, 175–183.CrossRefPubMedGoogle Scholar
  22. Bisogno, T., Hanuš, L., De Petrocellis, L., Tchilibon, S., Ponde, D. E., Brandi, I., Moriello, A. S., Davis, J. B., Mechoulam, R., Di Marzo, V. (2001). Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. British Journal of Pharmacology, 134, 845–852.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Boice, R. (1977). Burrows of wild and albino rats: Effects of domestication, outdoor raising, age, experience, and maternal state. Journal of Comparative and Physiological Psychology, 91, 649–661. CrossRefPubMedGoogle Scholar
  24. Broekkamp, C. L., Rijk, H. W., Joly-Gelouin, D., & Lloyd, K. L. (1986). Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. European Journal of Pharmacology, 126, 223–229. CrossRefPubMedGoogle Scholar
  25. Bruins Slot, L. A., Bardin, L., Auclair, A. L., Depoortere, R., & Newman-Tancredi, A. (2008). Effects of antipsychotics and reference monoaminergic ligands on marble burying behavior in mice. Behavioural Pharmacology, 19, 145–152. CrossRefPubMedGoogle Scholar
  26. Brunello, N., Blier, P., Judd, L. L., Mendlewicz, J., Nelson, C. J., Souery, D., ... Racagni, G. (2003). Noradrenaline in mood and anxiety disorders: Basic and clinical studies. International Clinical Psychopharmacology, 18, 191–202.Google Scholar
  27. Burn, C. C., Peters, A., & Mason, G. J. (2006). Acute effects of cage cleaning at different frequencies on laboratory rat behaviour and welfare. Animal Welfare, 15, 161–171.Google Scholar
  28. Burne, T. H., McGrath, J. J., Eyles, D. W., & Mackay-Sim, A. (2005). Behavioural characterization of vitamin D receptor knockout mice. Behavioural Brain Research, 157, 299–308.CrossRefPubMedGoogle Scholar
  29. Çalişkan, H., Şentunali, B., Özden, F. M., Cihan, K. H., Uzunkulaoğlu, M., Çakan, O., ... Zaloğlu, N. (2017). Marble burying test analysis in terms of biological and non-biological factors. Journal of Applied Biological Sciences, 11, 54–57.Google Scholar
  30. Casarotto, P. C., Gomes, F. V., Resstel, L. B. M., & Guimarães, F. S. (2010). Cannabidiol inhibitory effect on marble-burying behaviour: Involvement of CB1 receptors. Behavioural Pharmacology, 21, 353–358. CrossRefPubMedGoogle Scholar
  31. Chaki, S., Hirota, S., Funakoshi, T., Suzuki, Y., Suetake, S., Okubo, T., ... Okuyama, S. (2003). Anxiolytic-like and antidepressant-like activities of MCL0129 (1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl) ethyl]-4-[4-(2-methoxynaphthalen-1-yl) butyl] piperazine), a novel and potent nonpeptide antagonist of the melanocortin-4 receptor. Journal of Pharmacology and Experimental Therapeutics, 304, 818–826.Google Scholar
  32. Cheeta, S., Kenny, P. J., & File, S. E. (2000). Hippocampal and septal injections of nicotine and 8-OH-DPAT distinguish among different animal tests of anxiety. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 24, 1053–1067.CrossRefPubMedGoogle Scholar
  33. Choleris, E., Thomas, A., Kavaliers, M., & Prato, F. (2001). A detailed ethological analysis of the mouse open field test: Effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neuroscience & Biobehavioral Reviews, 25, 235–260.CrossRefGoogle Scholar
  34. Cornélio, A. M., & Nunes-de-Souza, R. L. (2007). Anxiogenic-like effects of mCPP microinfusions into the amygdala (but not dorsal or ventral hippocampus) in mice exposed to elevated plus-maze. Behavioural Brain Research, 178, 82–89.CrossRefPubMedGoogle Scholar
  35. Cortese, B. M., & Phan, K. L. (2005). The role of glutamate in anxiety and related disorders. CNS Spectrums, 10, 820–830.CrossRefPubMedGoogle Scholar
  36. Coşkun, M. (2011). Methylphenidate induced obsessive–compulsive symptoms treated with sertraline. Klinik Psikofarmakoloji Bulteni-Bulletin of Clinical Psychopharmacology, 21, 274–274.Google Scholar
  37. Cryan, J. F., & Holmes, A. (2005). The ascent of mouse: Advances in modelling human depression and anxiety. Nature Reviews Drug Discovery, 4, 775–790. CrossRefPubMedGoogle Scholar
  38. Cueto-Escobedo, J., Contreras, C. M., Bernal-Morales, B., Guillen-Ruiz, G., & Rodríguez-Landa, J. F. (2013). Defensive burying test in postweaning rats: Use of a small round chamber. Behavioural Pharmacology, 24, 693–698.CrossRefPubMedGoogle Scholar
  39. Davis, S. F., Moore, S. A., Cowen, C. L., Thurston, D. K., & Maggio, J. C. (1982). Defensive burying in the Mongolian gerbil (Meriones unguiculatus) as a function of size and shape of the test chamber. Animal Learning & Behavior, 10, 516–520.CrossRefGoogle Scholar
  40. De Almeida, A. A. C., De Carvalho, R. B. F., Silva, O. A., De Sousa, D. P., & De Freitas, R. M. (2014). Potential antioxidant and anxiolytic effects of (+)-limonene epoxide in mice after marble-burying test. Pharmacology Biochemistry and Behavior, 118, 69–78. CrossRefGoogle Scholar
  41. De Boer, S. F., & Koolhaas, J. M. (2003). Defensive burying in rodents: Ethology, neurobiology and psychopharmacology. European Journal of Pharmacology, 463, 145–161.CrossRefPubMedGoogle Scholar
  42. de Brouwer, G., & Wolmarans, W. (2018). Back to basics: A methodological perspective on marble-burying behavior as a screening test for psychiatric illness. Behavioural Processes. Advance online publication.
  43. de L. T. Vieira, G., Lossie, A. C., Lay, D. C., Jr., Radcliffe, J. S., & Garner, J. P. (2017). Preventing, treating, and predicting barbering: A fundamental role for biomarkers of oxidative stress in a mouse model of Trichotillomania. PLoS ONE, 12, e0175222. CrossRefGoogle Scholar
  44. de Mathis, M. A., Diniz, J. B., Hounie, A. G., Shavitt, R. G., Fossaluza, V., Ferrão, Y., ... Miguel, E. C. (2013). Trajectory in obsessive–compulsive disorder comorbidities. European NeuroPsychopharmacology, 23, 594–601.Google Scholar
  45. de Wit, S., & Dickinson, A. (2009). Associative theories of goal-directed behaviour: A case for animal-human translational models. Psychological Research, 73, 463–476. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Deacon, R., Thomas, C., Rawlins, J., & Morley, B. J. (2007). A comparison of the behavior of C57BL/6 and C57BL/10 mice. Behavioural Brain Research, 179, 239–247.CrossRefPubMedGoogle Scholar
  47. Deacon, R. M. J. (2006). Digging and marble burying in mice: Simple methods for in vivo identification of biological impacts. Nature Protocols, 1, 122–124. CrossRefPubMedGoogle Scholar
  48. Denenberg, V. H., Taylor, R. E., & Zarrow, M. (1969). Maternal behavior in the rat: An investigation and quantification of nest building. Behaviour, 34, 1–16.CrossRefPubMedGoogle Scholar
  49. Dey, A., Chatterjee, S. S., & Kumar, V. (2016). Low dose effects of a Withania somnifera extract on altered marble burying behavior in stressed mice. Journal of Intercultural Ethnopharmacology, 5, 1–4. CrossRefGoogle Scholar
  50. Dixit, M. P., Thakre, P. P., Pannase, A. S., Aglawe, M. M., Taksande, B. G., & Kotagale, N. R. (2014). Imidazoline binding sites mediates anticompulsive-like effect of agmatine in marble-burying behavior in mice. European Journal of Pharmacology, 732, 26–31. CrossRefPubMedGoogle Scholar
  51. Dougherty, D. D., Rauch, S. L., & Jenike, M. A. (2004). Pharmacotherapy for obsessive-compulsive disorder. Journal of Clinical Psychology, 60, 1195–1202.CrossRefPubMedGoogle Scholar
  52. Duangdao, D. M., Clark, S. D., Okamura, N., & Reinscheid, R. K. (2009). Behavioral phenotyping of neuropeptide S receptor knockout mice. Behavioural Brain Research, 205, 1–9. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Dudek, B. C., Adams, N., Boice, R., & Abbott, M. E. (1983). Genetic influences on digging behaviors in mice (Mus musculus) in laboratory and seminatural settings. Journal of Comparative Psychology, 97, 249–259.CrossRefPubMedGoogle Scholar
  54. Ebensperger, L. A., & Blumstein, D. T. (2006). Sociality in New World hystricognath rodents is linked to predators and burrow digging. Behavioral Ecology, 17, 410–418.CrossRefGoogle Scholar
  55. Egashira, N., Abe, M., Shirakawa, A., Niki, T., Mishima, K., Iwasaki, K., ... Fujiwara, M. (2013). Effects of mood stabilizers on marble-burying behavior in mice: Involvement of GABAergic system. Psychopharmacology, 226, 295–305.
  56. Egashira, N., Harada, S., Okuno, R., Matsushita, M., Nishimura, R., Mishima, K., ... Fujiwara, M. (2007). Involvement of the sigma1 receptor in inhibiting activity of fluvoxamine on marble-burying behavior: Comparison with paroxetine. European Journal of Pharmacology, 563, 149–154.
  57. Egashira, N., Kubota, N., Goto, Y., Watanabe, T., Kubota, K., Katsurabayashi, S., & Iwasaki, K. (2018). The antipsychotic trifluoperazine reduces marble-burying behavior in mice via D2 and 5-HT2A receptors: Implications for obsessive–compulsive disorder. Pharmacology Biochemistry and Behavior, 165, 9–13. CrossRefGoogle Scholar
  58. Egashira, N., Okuno, R., Abe, M., Matsushita, M., Mishima, K., Iwasaki, K., ... Fujiwara, M. (2008). Calcium-channel antagonists inhibit marble-burying behavior in mice. Journal of Pharmacological Sciences, 108, 140–143.
  59. Egashira, N., Okuno, R., Harada, S., Matsushita, M., Mishima, K., Iwasaki, K., ... Fujiwara, M. (2008). Effects of glutamate-related drugs on marble-burying behavior in mice: Implications for obsessive–compulsive disorder. European Journal of Pharmacology, 586, 164–170.
  60. Egashira, N., Okuno, R., Matsushita, M., Abe, M., Mishima, K., Iwasaki, K., ... Fujiwara, M. (2008). Aripiprazole inhibits marble-burying behavior via 5-hydroxytryptamine (5-HT)1A receptor-independent mechanisms. European Journal of Pharmacology, 592, 103–108.
  61. Egashira, N., Okuno, R., Shirakawa, A., Nagao, M., Mishima, K., Iwasaki, K., ... Fujiwara, M. (2012). Role of 5-hydroxytryptamine 2C receptors in marble-burying behavior in mice. Biological and Pharmaceutical Bulletin, 35, 376–379.
  62. Egashira, N., Shirakawa, A., Abe, M., Niki, T., Mishima, K., Iwasaki, K., ... Fujiwara, M. (2012). N-acetyl-L-cysteine inhibits marble-burying behavior in mice. Journal of Pharmacological Sciences, 119, 97–101.
  63. Egashira, N., Tanoue, A., Matsuda, T., Koushi, E., Harada, S., Takano, Y., ... Fujiwara, M. (2007). Impaired social interaction and reduced anxiety-related behavior in vasopressin V1a receptor knockout mice. Behavioural Brain Research, 178, 123–127.Google Scholar
  64. El Mansari, M., & Blier, P. (2006). Mechanisms of action of current and potential pharmacotherapies of obsessive–compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30, 362–373. CrossRefPubMedGoogle Scholar
  65. Ellison, G. (1995). Is nest building an important component of thermoregulatory behaviour in the pouched mouse (Saccostomus campestris)? Physiology & Behavior, 57, 693–697.CrossRefGoogle Scholar
  66. Evans, D. W., Lewis, M. D., & Iobst, E. (2004). The role of the orbitofrontal cortex in normally developing compulsive-like behaviors and obsessive–compulsive disorder. Brain and Cognition, 55, 220–234.CrossRefPubMedGoogle Scholar
  67. Feil, R., & Kleppisch, T. (2008). NO/cGMP-dependent modulation of synaptic transmission. In T. C. Südhof, K. Starke, & S. Boehm (Eds.), Pharmacology of neurotransmitter release (pp. 529–560). Berlin, Germany: Springer.CrossRefGoogle Scholar
  68. File, S. E., & Seth, P. (2003). A review of 25 years of the social interaction test. European Journal of Pharmacology, 463, 35–53. CrossRefPubMedGoogle Scholar
  69. Fineberg, N. A. (2004). Pharmacological treatment for obsessive–compulsive disorder. Psychiatry, 3, 72–76. CrossRefGoogle Scholar
  70. Fleming, T. H., & Brown, G. J. (1975). An experimental analysis of seed hoarding and burrowing behavior in two species of Costa Rican heteromyid rodents. Journal of Mammalogy, 56, 301–315.CrossRefGoogle Scholar
  71. Fox, J. H., Hammack, S. E., & Falls, W. A. (2008). Exercise is associated with reduction in the anxiogenic effect of mCPP on acoustic startle. Behavioral Neuroscience, 122, 943–948. CrossRefPubMedGoogle Scholar
  72. Frye, C. A., Petralia, S. M., & Rhodes, M. E. (2000). Estrous cycle and sex differences in performance on anxiety tasks coincide with increases in hippocampal progesterone and 3α, 5α-THP. Pharmacology Biochemistry and Behavior, 67, 587–596.CrossRefGoogle Scholar
  73. Gaikwad, U., & Parle, M. (2011). Combination of aripiprazole and ethanol attenuates marble-burying behavior in mice. Acta Poloniae Pharmaceutica. Drug Research, 68, 435–440.Google Scholar
  74. Gaikwad, U., Parle, M., Kumar, A., & Gaikwad, D. (2010). Effect of ritanserin and leuprolide alone and combined on marble-burying behavior of mice. Acta Poloniae Pharmaceutica. Drug Research, 67, 523–527.Google Scholar
  75. Gavioli, E. C., Rizzi, A., Marzola, G., Zucchini, S., & Regoli, D. (2007). Altered anxiety-related behavior in nociceptin/orphanin FQ receptor gene knockout mice. Peptides, 28, 1229–1239.CrossRefPubMedGoogle Scholar
  76. Gawali, N. B., Chowdhury, A. A., Kothavade, P. S., Bulani, V. D., Nagmoti, D. M., & Juvekar, A. R. (2016). Involvement of nitric oxide in anticompulsive-like effect of agmatine on marble-burying behaviour in mice. European Journal of Pharmacology, 770, 165–171. CrossRefPubMedGoogle Scholar
  77. Geyer, M. A., & Markou, A. (1995). Animal models of psychiatric disorders. In F. Bloom & D. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 787–798). New York, NY: Raven Press.Google Scholar
  78. Goddard, A. W., Shekhar, A., Whiteman, A. F., & McDougle, C. J. (2008). Serotoninergic mechanisms in the treatment of obsessive–compulsive disorder. Drug Discovery Today, 13, 325–332.CrossRefPubMedGoogle Scholar
  79. Goldberg, H. L., & Finnerty, R. J. (1979). The comparative efficacy of buspirone and diazepam in the treatment of anxiety. American Journal of Psychiatry, 136, 1184–1187. CrossRefPubMedGoogle Scholar
  80. Gomes, F. V., Casarotto, P. C., Resstel, L. B. M., & Guimarães, F. S. (2011). Facilitation of CB1 receptor-mediated neurotransmission decreases marble burying behavior in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 434–438. CrossRefPubMedGoogle Scholar
  81. Gong, Z.-H., Li, Y.-F., Zhao, N., Yang, H.-J., Su, R.-B., Luo, Z.-P., & Li, J. (2006). Anxiolytic effect of agmatine in rats and mice. European Journal of Pharmacology, 550, 112–116. CrossRefPubMedGoogle Scholar
  82. Green, A. R., Mechan, A. O., Elliott, J. M., O’Shea, E., & Colado, M. I. (2003). The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacological Reviews, 55, 463–508. CrossRefPubMedGoogle Scholar
  83. Greene-Schloesser, D. M., Van der Zee, E. A., Sheppard, D. K., Castillo, M. R., Gregg, K. A., Burrow, T., ... Bult-Ito, A. (2011). Predictive validity of a non-induced mouse model of compulsive-like behavior. Behavioural Brain Research, 221, 55–62.
  84. Guldenpfennig, M., Wolmarans, D. W., du Preez, J. L., Stein, D. J., & Harvey, B. H. (2011). Cortico-striatal oxidative status, dopamine turnover and relation with stereotypy in the deer mouse. Physiology & Behavior, 103, 404–411. CrossRefGoogle Scholar
  85. Gyertyán, I. (1995). Analysis of the marble burying response: Marbles serve to measure digging rather than evoke burying. Behavioural Pharmacology, 6, 24–31.CrossRefPubMedGoogle Scholar
  86. Haller, J., Bakos, N., Szirmay, M., Ledent, C., & Freund, T. F. (2002). The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. European Journal of Neuroscience, 16, 1395–1398.CrossRefPubMedGoogle Scholar
  87. Haller, J., Varga, B., Ledent, C., & Freund, T. F. (2004). CB1 cannabinoid receptors mediate anxiolytic effects: Convergent genetic and pharmacological evidence with CB1-specific agents. Behavioural Pharmacology, 15, 299–304.CrossRefPubMedGoogle Scholar
  88. Harasawa, T., Ago, Y., Itoh, S., Baba, A., & Matsuda, T. (2006). Role of serotonin type 1A receptors in fluvoxamine-induced inhibition of marble-burying behavior in mice. Behavioural Pharmacology, 17, 637–640. CrossRefPubMedGoogle Scholar
  89. Hoehn-Saric, R., & McLeod, D. R. (1988). The peripheral sympathetic nervous system: Its role in normal and pathologic anxiety. Psychiatric Clinics of North America, 11, 375–386.CrossRefPubMedGoogle Scholar
  90. Honda, S., Kawaura, K., Soeda, F., Shirasaki, T., & Takahama, K. (2011). The potent inhibitory effect of tipepidine on marble-burying behavior in mice. Behavioural Brain Research, 216, 308–312. CrossRefPubMedGoogle Scholar
  91. Howlett, A., Barth, F., Bonner, T., Cabral, G., Casellas, P., Devane, W., ... Martin, B. (2002). International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacological Reviews, 54, 161–202.Google Scholar
  92. Husted, D. S., Shapira, N. A., & Goodman, W. K. (2006). The neurocircuitry of obsessive–compulsive disorder and disgust. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30, 389–399.CrossRefPubMedGoogle Scholar
  93. Ichimaru, Y., Egawa, T., & Sawa, A. (1995). 5-HT1A-receptor subtype mediates the effect of fluvoxamine, a selective serotonin reuptake inhibitor, on marble-burying behavior in mice. Japanese Journal of Pharmacology, 68, 65–70.CrossRefPubMedGoogle Scholar
  94. Iijima, M., Kurosu, S., & Chaki, S. (2010). Effects of agents targeting glutamatergic systems on marble-burying behavior. Neuroscience Letters, 471, 63–65. CrossRefPubMedGoogle Scholar
  95. Ishikawa, M., & Hashimoto, K. (2010). The role of sigma-1 receptors in the pathophysiology of neuropsychiatric diseases. Journal of Receptor, Ligand and Channel Research, 3, 25–36.Google Scholar
  96. Jenkins, S. H., & Breck, S. W. (1998). Differences in food hoarding among six species of heteromyid rodents. Journal of Mammalogy, 79, 1221–1233.CrossRefGoogle Scholar
  97. Jimenez-Gomez, C., Osentoski, A., & Woods, J. H. (2011). Pharmacological evaluation of the adequacy of marble burying as an animal model of compulsion and/or anxiety. Behavioural Pharmacology, 22, 711–713.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Jirkof, P. (2014). Burrowing and nest building behavior as indicators of well-being in mice. Journal of Neuroscience Methods, 234, 139–146. CrossRefPubMedGoogle Scholar
  99. Joel, D. (2006). The signal attenuation rat model of obsessive–compulsive disorder: A review. Psychopharmacology, 186, 487–503. CrossRefPubMedGoogle Scholar
  100. Jope, R. (1999). Anti-bipolar therapy: Mechanism of action of lithium. Molecular Psychiatry, 4, 117–128.CrossRefPubMedGoogle Scholar
  101. Kaehler, S. T., Singewald, N., Sinner, C., & Philippu, A. (1999). Nitric oxide modulates the release of serotonin in the rat hypothalamus. Brain Research, 835, 346–349. CrossRefPubMedGoogle Scholar
  102. Kalariya, M., Prajapati, R., Parmar, S. K., & Sheth, N. (2015). Effect of hydroalcoholic extract of leaves of Colocasia esculenta on marble-burying behavior in mice: Implications for obsessive–compulsive disorder. Pharmaceutical Biology, 53, 1239–1242. CrossRefPubMedGoogle Scholar
  103. Kedia, S., & Chattarji, S. (2014). Marble burying as a test of the delayed anxiogenic effects of acute immobilisation stress in mice. Journal of Neuroscience Methods, 233, 150–154. CrossRefPubMedGoogle Scholar
  104. Khanna, S., John, J. P., & Reddy, P. L. (2001). Neuroendocrine and behavioral responses to mCPP in obsessive–compulsive disorder. Psychoneuroendocrinology, 26, 209–223.CrossRefPubMedGoogle Scholar
  105. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biology, 8, e1000412. CrossRefPubMedPubMedCentralGoogle Scholar
  106. Kinsey, S. G., O’Neal, S. T., Long, J. Z., Cravatt, B. F., & Lichtman, A. H. (2011). Inhibition of endocannabinoid catabolic enzymes elicits anxiolytic-like effects in the marble burying assay. Pharmacology Biochemistry and Behavior, 98, 21–27. CrossRefGoogle Scholar
  107. Korff, S., Stein, D. J., & Harvey, B. H. (2008). Stereotypic behaviour in the deer mouse: Pharmacological validation and relevance for obsessive compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32, 348–355. CrossRefPubMedGoogle Scholar
  108. Krass, M., Rünkorg, K., Wegener, G., & Volke, V. (2010). Nitric oxide is involved in the regulation of marble-burying behavior. Neuroscience Letters, 480, 55–58. CrossRefPubMedGoogle Scholar
  109. Lafleur, D. L., Pittenger, C., Kelmendi, B., Gardner, T., Wasylink, S., Malison, R. T., ... Coric, V. (2006). N-acetylcysteine augmentation in serotonin reuptake inhibitor refractory obsessive–compulsive disorder. Psychopharmacology, 184, 254–256.Google Scholar
  110. Lähdesmäki, J., Sallinen, J., MacDonald, E., Kobilka, B., Fagerholm, V., & Scheinin, M. (2002). Behavioral and neurochemical characterization of α 2A-adrenergic receptor knockout mice. Neuroscience, 113, 289–299.CrossRefPubMedGoogle Scholar
  111. Layne, J. N., & Ehrhart, L. M. (1970). Digging behavior of four species of deer mice (Peromyscus). (American Museum Novitates, no. 2429). Washington, DC: American Museum of Natural history.Google Scholar
  112. Lewis, M. H., Gariépy, J.-L., Gendreau, P., Nichols, D. E., & Mailman, R. B. (1994). Social reactivity and D 1 dopamine receptors: Studies in mice selectively bred for high and low levels of aggression. Neuropsychopharmacology, 10, 115–122.CrossRefPubMedGoogle Scholar
  113. Li, X., Morrow, D., & Witkin, J. M. (2006). Decreases in nestlet shredding of mice by serotonin uptake inhibitors: Comparison with marble burying. Life Sciences, 78, 1933–1939. CrossRefPubMedGoogle Scholar
  114. Linfoot, I., Gray, M., Bingham, B., Williamson, M., Pinel, J. P., & Viau, V. (2009). Naturally occurring variations in defensive burying behavior are associated with differences in vasopressin, oxytocin, and androgen receptors in the male rat. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33, 1129–1140.CrossRefPubMedGoogle Scholar
  115. Llaneza, D. C., & Frye, C. A. (2009). Progestogens and estrogen influence impulsive burying and avoidant freezing behavior of naturally cycling and ovariectomized rats. Pharmacology Biochemistry and Behavior, 93, 337–342.CrossRefGoogle Scholar
  116. Londei, T., Valentini, A. M., & Leone, V. G. (1998). Investigative burying by laboratory mice may involve non-functional, compulsive, behaviour. Behavioural Brain Research, 94, 249–254.CrossRefPubMedGoogle Scholar
  117. Lynch III, J. J., Castagné, V., Moser, P. C., & Mittelstadt, S. W. (2011). Comparison of methods for the assessment of locomotor activity in rodent safety pharmacology studies. Journal of Pharmacological and Toxicological Methods, 64, 74–80.CrossRefPubMedGoogle Scholar
  118. Malhi, G. S., Adams, D., & Berk, M. (2009). Is lithium in a class of its own? A brief profile of its clinical use. Australian and New Zealand Journal of Psychiatry, 43, 1096–1104.CrossRefPubMedGoogle Scholar
  119. Markarian, Y., Larson, M. J., Aldea, M. A., Baldwin, S. A., Good, D., Berkeljon, A., ... McKay, D. (2010). Multiple pathways to functional impairment in obsessive–compulsive disorder. Clinical Psychology Review, 30, 78–88.
  120. Martin, E. I., Ressler, K. J., Binder, E., & Nemeroff, C. B. (2009). The neurobiology of anxiety disorders: Brain imaging, genetics, and psychoneuroendocrinology. Psychiatric Clinics of North America, 32, 549–575.CrossRefPubMedGoogle Scholar
  121. Masuda, Y., Ishigooka, S., & Matsuda, Y. (2000). Digging behavior of ddY mouse. Experimental Animals, 49, 235–237.CrossRefPubMedGoogle Scholar
  122. Mataix-Cols, D., do Rosario-Campos, M. C., & Leckman, J. F. (2005). A multidimensional model of obsessive–compulsive disorder. American Journal of Psychiatry, 162, 228–238.CrossRefPubMedGoogle Scholar
  123. Mathew, S. J., Price, R. B., & Charney, D. S. (2008). Recent advances in the neurobiology of anxiety disorders: Implications for novel therapeutics. American Journal of Medical Genetics: Part C, 148C, 89–98. CrossRefGoogle Scholar
  124. Matsushima, Y., Shirota, O., Kikura-Hanajiri, R., Goda, Y., & Eguchi, F. (2009). Effects of psilocybe argentipes on marble-burying behavior in mice. Bioscience, Biotechnology, and Biochemistry, 73, 1866–1868. CrossRefPubMedGoogle Scholar
  125. Matsushita, M., Egashira, N., Harada, S., Okuno, R., Mishima, K., Iwasaki, K., ... Fujiwara, M. (2005). Perospirone, a novel antipsychotic drug, inhibits marble-burying behavior via 5-HT1A receptor in mice: Implications for obsessive–compulsive disorder. Journal of Pharmacological Sciences, 99, 154–159.
  126. McKay, D., Abramowitz, J. S., Calamari, J. E., Kyrios, M., Radomsky, A., Sookman, D., ... Wilhelm, S. (2004). A critical evaluation of obsessive–compulsive disorder subtypes: Symptoms versus mechanisms. Clinical Psychology Review, 24, 283–313.
  127. Meldrum, B. (1984). Amino acid neurotransmitters and new approaches to anticonvulsant drug action. Epilepsia, 25(Suppl. 2), S140–S149.CrossRefPubMedGoogle Scholar
  128. Millan, M. J., Girardon, S., Mullot, J., Brocco, M., & Dekeyne, A. (2002). Stereospecific blockade of marble-burying behaviour in mice by selective, non-peptidergic neurokinin1 (NK1) receptor antagonists. Neuropharmacology, 42, 677–684. CrossRefPubMedGoogle Scholar
  129. Monteiro, P., & Feng, G. (2016). Learning from animal models of obsessive–compulsive disorder. Biological Psychiatry, 79, 7–16. CrossRefPubMedGoogle Scholar
  130. Moreira, F. A., & Wotjak, C. T. (2009). Cannabinoids and anxiety. In M. B. Stein & T. Steckler (Eds.), Behavioral neurobiology of anxiety and its treatment (pp. 429–450). Heidelberg, Germany: Springer.CrossRefGoogle Scholar
  131. Mosienko, V., Bert, B., Beis, D., Matthes, S., Fink, H., Bader, M., & Alenina, N. (2012). Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. Translational Psychiatry, 2, e122.CrossRefPubMedPubMedCentralGoogle Scholar
  132. Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., ... Hasegawa, N. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of Neurophysiology, 84, 289–300.CrossRefPubMedGoogle Scholar
  133. Nardo, M., Casarotto, P. C., Gomes, F. V., & Guimarães, F. S. (2014). Cannabidiol reverses the mCPP-induced increase in marble-burying behavior. Fundamental and Clinical Pharmacology, 28, 544–550. CrossRefPubMedGoogle Scholar
  134. Navarro, M., Hernández, E., Muñoz, R. M., del Arco, I., Villanúa, M. A., Carrera, M. R. A., & de Fonseca, F. R. (1997). Acute administration of the CB1 cannabinoid receptor antagonist SR 141716A induces anxiety-like responses in the rat. NeuroReport, 8, 491–496.CrossRefPubMedGoogle Scholar
  135. Neumann, I. D., & Landgraf, R. (2012). Balance of brain oxytocin and vasopressin: Implications for anxiety, depression, and social behaviors. Trends in Neurosciences, 35, 649–659.CrossRefPubMedGoogle Scholar
  136. Nicolas, L. B., Kolb, Y., & Prinssen, E. P. M. (2006). A combined marble burying–locomotor activity test in mice: A practical screening test with sensitivity to different classes of anxiolytics and antidepressants. European Journal of Pharmacology, 547, 106–115. CrossRefPubMedGoogle Scholar
  137. Nielen, M. M., den Boer, J. A., & Smid, H. G. (2009). Patients with obsessive–compulsive disorder are impaired in associative learning based on external feedback. Psychological Medicine, 39, 1519–1526. CrossRefPubMedGoogle Scholar
  138. Njung’e, K., & Handley, S. L. (1991a). Effects of 5-HT uptake inhibitors, agonists and antagonists on the burying of harmless objects by mice; a putative test for anxiolytic agents. British Journal of Pharmacology, 104, 105–112. CrossRefPubMedPubMedCentralGoogle Scholar
  139. Njung’e, K., & Handley, S. L. (1991b). Evaluation of marble-burying behavior as a model of anxiety. Pharmacology, Biochemistry and Behavior, 38, 63–67. CrossRefPubMedGoogle Scholar
  140. Nuss, P. (2015). Anxiety disorders and GABA neurotransmission: A disturbance of modulation. Neuropsychiatric Disease and Treatment, 11, 165–175. CrossRefPubMedPubMedCentralGoogle Scholar
  141. Ohl, F. (2003). Testing for anxiety. Clinical Neuroscience Research, 3, 233–238.CrossRefGoogle Scholar
  142. Ohl, F. (2005). Animal models of anxiety. In A. Bilkei-Gorzo & A. Ströhle (Eds.), Anxiety and anxiolytic drugs (pp. 35–69). Berlin, Germanuy: Springer.CrossRefGoogle Scholar
  143. Owens, M. J., Morgan, W. N., Plott, S. J., & Nemeroff, C. B. (1997). Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. Journal of Pharmacology and Experimental Therapeutics, 283, 1305–1322.PubMedGoogle Scholar
  144. Özcan, D., & Seckin, D. (2016). N-Acetylcysteine in the treatment of trichotillomania: Remarkable results in two patients. Journal of the European Academy of Dermatology and Venereology, 30, 1606–1608.CrossRefPubMedGoogle Scholar
  145. Pertwee, R. G. (1997). Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacology & Therapeutics, 74, 129–180.Google Scholar
  146. Pertwee, R. G. (2008). The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. British Journal of Pharmacology, 153, 199–215. CrossRefPubMedGoogle Scholar
  147. Perucca, E. (2002). Pharmacological and therapeutic properties of valproate. CNS Drugs, 16, 695–714.CrossRefPubMedGoogle Scholar
  148. Pigott, T. A., Hill, J. L., Grady, T. A., L’Heureux, F., Bernstein, S., Rubenstein, C. S., & Murphy, D. L. (1993). A comparison of the behavioral effects of oral versus intravenous mCPP administration in OCD patients and the effect of metergoline prior to iv mCPP. Biological Psychiatry, 33, 3–14.CrossRefPubMedGoogle Scholar
  149. Pigott, T. A., L’Heureux, F., Hill, J. L., Bihari, K., Bernstein, S. E., & Murphy, D. L. (1992). A double-blind study of adjuvant buspirone hydrochloride in clomipramine-treated patients with obsessive–compulsive disorder. Journal of Clinical Psychopharmacology, 12, 11–18.PubMedGoogle Scholar
  150. Pinel, J. P., Treit, D., Ladak, F., & MacLennan, A. (1980). Conditioned defensive burying in rats free to escape. Animal Learning & Behavior, 8, 447–451.CrossRefGoogle Scholar
  151. Pinel, J. P. J., & Treit, D. (1978). Burying as a defensive response in rats. Journal of Comparative and Physiological Psychology, 92, 708–712.CrossRefGoogle Scholar
  152. Pisano, R. G., & Storer, T. I. (1948). Burrows and feeding of the Norway rat. Journal of Mammalogy, 29, 374–383.CrossRefGoogle Scholar
  153. Pittenger, C., Krystal, J. H., & Coric, V. (2006). Glutamate-modulating drugs as novel pharmacotherapeutic agents in the treatment of obsessive–compulsive disorder. NeuroRx, 3, 69–81.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Poling, A., Cleary, J., & Monaghan, M. (1981). Burying by rats in response to aversive and nonaversive stimuli. Journal of the Experimental Analysis of Behavior, 35, 31–44.CrossRefPubMedPubMedCentralGoogle Scholar
  155. Powell, S. B., Newman, H. A., Pendergast, J. F., & Lewis, M. H. (1999). A rodent model of spontaneous stereotypy: Initial characterization of developmental, environmental, and neurobiological factors. Physiology & Behavior, 66, 355–363. CrossRefGoogle Scholar
  156. Prajapati, R. P., Kalaria, M. V., Karkare, V. P., Parmar, S. K., & Sheth, N. R. (2011). Effect of methanolic extract of Lagenaria siceraria (Molina) Standley fruits on marble-burying behavior in mice: Implications for obsessive–compulsive disorder. Pharmacognosy Research, 3, 62–66. CrossRefPubMedPubMedCentralGoogle Scholar
  157. Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. European Journal of Pharmacology, 463, 3–33.CrossRefPubMedGoogle Scholar
  158. Pym, L. J., Cook, S. M., Rosahl, T., McKernan, R. M., & Atack, J. R. (2005). Selective labelling of diazepam-insensitive GABAA receptors in vivo using [3H]Ro 15-4513. British Journal of Pharmacology, 146, 817–825.CrossRefPubMedPubMedCentralGoogle Scholar
  159. Regenass, W., Möller, M., & Harvey, B. H. (2018). Studies into the anxiolytic actions of agomelatine in social isolation reared rats: Role of corticosterone and sex. Journal of Psychopharmacology, 32, 134–145. CrossRefPubMedGoogle Scholar
  160. Rey, A. A., Purrio, M., Viveros, M.-P., & Lutz, B. (2012). Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA B receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology, 37, 2624–2634. CrossRefPubMedPubMedCentralGoogle Scholar
  161. Rickels, K. (1990). Buspirone in clinical practice. Journal of Clinical Psychiatry, 51, 51–54.PubMedGoogle Scholar
  162. Rowley, H., Pinder, L., Kulkarni, R., Cheetham, S., & Heal, D. J. (2015). Simultaneous determination of the effects of methamphetamine on GABA, glutamate and monoamines by microdialysis in the prefrontal cortex and hippocampus of rats. Drug and Alcohol Dependence, 156, e194.CrossRefGoogle Scholar
  163. Rowsell, M., & Francis, S. E. (2015). OCD subtypes: Which, if any, are valid? Clinical Psychology: Science and Practice, 22, 414–435. CrossRefGoogle Scholar
  164. Ruffer, D. G. (1965). Burrows and burrowing behavior of Onychomys leucogaster. Journal of Mammalogy, 46, 241–247.CrossRefGoogle Scholar
  165. Saadat, K. S., Elliott, J. M., Colado, M. I., & Gree, A. R. (2006). The acute and long-term neurotoxic effects of MDMA on marble burying behaviour in mice. Journal of Psychopharmacology, 20, 264–271. CrossRefPubMedGoogle Scholar
  166. Sanathara, N. M., Garau, C., Alachkar, A., Wang, L., Wang, Z., Nishimori, K., ... Civelli, O. (2018). Melanin concentrating hormone modulates oxytocin-mediated marble burying. Neuropharmacology, 128, 22–32.
  167. Sandor, N. T., Brassai, A., Pliskas, A., & Lendvai, B. (1995). Role of nitric oxide in modulating neurotransmitter release from rat striatum. Brain Research Bulletin, 36, 483–486.CrossRefPubMedGoogle Scholar
  168. Santarelli, L., Gobbi, G., Debs, P. C., Sibille, E. L., Blier, P., Hen, R., & Heath, M. J. (2001). Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. Proceedings of the National Academy of Sciences, 98, 1912–1917.CrossRefGoogle Scholar
  169. Sareen, J., Kirshner, A., Lander, M., Kjernisted, K. D., Eleff, M. K., & Reiss, J. P. (2004). Do antipsychotics ameliorate or exacerbate Obsessive Compulsive Disorder symptoms? A systematic review. Journal of Affective Disorders, 82, 167–174.CrossRefPubMedGoogle Scholar
  170. Savy, C. Y., Fitchett, A. E., McQuade, R., Gartside, S. E., Morris, C. M., Blain, P. G., & Judge, S. J. (2015). Low-level repeated exposure to diazinon and chlorpyrifos decrease anxiety-like behaviour in adult male rats as assessed by marble burying behaviour. NeuroToxicology, 50, 149–156. CrossRefPubMedGoogle Scholar
  171. Saxena, S., & Rauch, S. L. (2000). Functional neuroimaging and the neuroanatomy of obsessive–compulsive disorder. Psychiatric Clinics of North America, 23, 563–586.CrossRefPubMedGoogle Scholar
  172. Schlicker, E., & Kathmann, M. (2001). Modulation of transmitter release via presynaptic cannabinoid receptors. Trends in Pharmacological Sciences, 22, 565–572.CrossRefPubMedGoogle Scholar
  173. Schneider, T., & Popik, P. (2007). Attenuation of estrous cycle-dependent marble burying in female rats by acute treatment with progesterone and antidepressants. Psychoneuroendocrinology, 32, 651–659. CrossRefPubMedGoogle Scholar
  174. Schultz, D. (1972). The effects of novelty on laboratory rat digging behavior. Psychonomic Science, 29, 303–304.CrossRefGoogle Scholar
  175. Segieth, J., Pearce, B., Fowler, L., & Whitton, P. S. (2001). Regulatory role of nitric oxide over hippocampal 5-HT release in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 363, 302–306.CrossRefPubMedGoogle Scholar
  176. Serby, M. (2003). Methylphenidate-induced obsessive–compulsive symptoms in an elderly man. CNS Spectrums, 8, 612–613.CrossRefPubMedGoogle Scholar
  177. Shakeri, J., Farnia, V., Karimi, A. R., Tatari, F., Juibari, T. A., Alikhani, M., ... Brand, S. (2016). The prevalence and clinical features of amphetamine-induced obsessive compulsive disorder. Drug & Alcohol Dependence, 160, 157–162.Google Scholar
  178. Sherwin, C., Haug, E., Terkelsen, N., & Vadgama, M. (2004). Studies on the motivation for burrowing by laboratory mice. Applied Animal Behaviour Science, 88, 343–358.CrossRefGoogle Scholar
  179. Shimazaki, T., Iijima, M., & Chaki, S. (2004). Anxiolytic-like activity of MGS0039, a potent group II metabotropic glutamate receptor antagonist, in a marble-burying behavior test. European Journal of Pharmacology, 501, 121–125. CrossRefPubMedGoogle Scholar
  180. Shmelkov, S. V., Hormigo, A., Jing, D., Proenca, C. C., Bath, K. G., Milde, T., ... Dincheva, I. (2010). Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive–compulsive-like behaviors in mice. Nature Medicine, 16, 598–602.
  181. Skalisz, L. L., Beijamini, V., & Andreatini, R. (2004). Effect of Hypericum perforatum on marble-burying by mice. Phytotherapy Research, 18, 399–402. CrossRefPubMedGoogle Scholar
  182. Sohn, S. Y., Kang, J. I., Namkoong, K., & Kim, S. J. (2014). Multidimensional measures of impulsivity in obsessive–compulsive disorder: Cannot wait and stop. PLoS ONE, 9, e111739. CrossRefPubMedPubMedCentralGoogle Scholar
  183. Sørensen, C. B., Kirkeby, L., & Thomsen, P. H. (2004). Quality of life with OCD. A self-reported survey among members of the Danish OCD Association. Nordic Journal of Psychiatry, 58, 231–236.CrossRefPubMedGoogle Scholar
  184. Spiacci Jr, A., Kanamaru, F., Guimaraes, F., & Oliveira, R. (2008). Nitric oxide-mediated anxiolytic-like and antidepressant-like effects in animal models of anxiety and depression. Pharmacology Biochemistry and Behavior, 88, 247–255.CrossRefGoogle Scholar
  185. Stein, D. J., Fineberg, N. A., Bienvenu, O. J., Denys, D., Lochner, C., Nestadt, G., ... Phillips, K. A. (2010). Should OCD be classified as an anxiety disorder in DSM-V? Depression and Anxiety, 27, 495–506.Google Scholar
  186. Stocco, A., Lebiere, C., & Anderson, J. R. (2010). Conditional routing of information to the cortex: A model of the basal ganglia’s role in cognitive coordination. Psychological Review, 117, 541–5742. CrossRefPubMedPubMedCentralGoogle Scholar
  187. Sugimoto, Y., Tagawa, N., Kobayashi, Y., Hotta, Y., & Yamada, J. (2007). Effects of the serotonin and noradrenaline reuptake inhibitor (SNRI) milnacipran on marble burying behavior in mice. Biological and Pharmaceutical Bulletin, 30, 2399–2401. CrossRefPubMedGoogle Scholar
  188. Szechtman, H., Ahmari, S. E., Beninger, R. J., Eilam, D., Harvey, B. H., Edemann-Callesen, H., & Winter, C. (2017). Obsessive-compulsive disorder: Insights from animal models. Neuroscience & Biobehavioral Reviews, 76, 254–279.CrossRefGoogle Scholar
  189. Szechtman, H., Sulis, W., & Eilam, D. (1998). Quinpirole induces compulsive checking behavior in rats: A potential animal model of obsessive–compulsive disorder (OCD). Behavioral Neuroscience, 112, 1475–1485.CrossRefPubMedGoogle Scholar
  190. Takeuchi, H., Yatsugi, S. I., & Yamaguchi, T. (2002). Effect of YM992, a novel antidepressant with selective serotonin re-uptake inhibitory and 5-HT2A receptor antagonistic activity, on a marble-burying behavior test as an obsessive–compulsive disorder model. Japanese Journal of Pharmacology, 90, 197–200. CrossRefPubMedGoogle Scholar
  191. Tanaka, M., Yoshida, M., Emoto, H., & Ishii, H. (2000). Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: Basic studies. European Journal of Pharmacology, 405, 397–406.CrossRefPubMedGoogle Scholar
  192. Tasan, R., Lin, S., Hetzenauer, A., Singewald, N., Herzog, H., & Sperk, G. (2009). Increased novelty-induced motor activity and reduced depression-like behavior in neuropeptide Y (NPY)-Y4 receptor knockout mice. Neuroscience, 158, 1717–1730. CrossRefPubMedGoogle Scholar
  193. Tatsumi, M., Groshan, K., Blakely, R. D., & Richelson, E. (1997). Pharmacological profile of antidepressants and related compounds at human monoamine transporters. European Journal of Pharmacology, 340, 249–258.CrossRefPubMedGoogle Scholar
  194. Taylor, G. T., Lerch, S., & Chourbaji, S. (2017). Marble burying as compulsive behaviors in male and female mice. Acta Neurobiologiae Experimentalis, 77, 254–260.CrossRefPubMedGoogle Scholar
  195. Terlecki, L. J., Pinel, J. P., & Treit, D. (1979). Conditioned and unconditioned defensive burying in the rat. Learning and Motivation, 10, 337–350.CrossRefGoogle Scholar
  196. Thomas, A., Burant, A., Bui, N., Graham, D., Yuva-Paylor, L. A., & Paylor, R. (2009). Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology, 204, 361–373. CrossRefPubMedPubMedCentralGoogle Scholar
  197. Tillisch, K., Labus, J., Nam, B., Bueller, J., Smith, S., Suyenobu, B., ... Mayer, E. (2012). Neurokinin-1-receptor antagonism decreases anxiety and emotional arousal circuit response to noxious visceral distension in women with irritable bowel syndrome: A pilot study. Alimentary Pharmacology & Therapeutics, 35, 360–367.Google Scholar
  198. Torres-Lista, V., López-Pousa, S., & Giménez-Llort, L. (2015). Marble-burying is enhanced in 3xTg-AD mice, can be reversed by risperidone and it is modulable by handling. Behavioural Processes, 116, 69–74. CrossRefPubMedGoogle Scholar
  199. Tracy, R. L., & Walsberg, G. E. (2002). Kangaroo rats revisited: Re-evaluating a classic case of desert survival. Oecologia, 133, 449–457.CrossRefPubMedGoogle Scholar
  200. Treit, D. (1990). A comparison of anxiolytic and nonanxiolytic agents in the shock-probe/burying test for anxiolytics. Pharmacology Biochemistry and Behavior, 36, 203–205.CrossRefGoogle Scholar
  201. Treit, D., Pinel, J. P. J., & Fibiger, H. C. (1981). Conditioned defensive burying: A new paradigm for the study of anxiolytic agents. Pharmacology, Biochemistry and Behavior, 15, 619–626. CrossRefPubMedGoogle Scholar
  202. Tucci, M. C., Dvorkin-Gheva, A., Graham, D., Amodeo, S., Cheon, P., Kirk, A., ... Szechtman, H. (2013). Effects of the serotonergic agonist mCPP on male rats in the quinpirole sensitization model of obsessive–compulsive disorder (OCD). Psychopharmacology, 227, 277–285.Google Scholar
  203. Tucci, M. C., Dvorkin-Gheva, A., Johnson, E., Wong, M., & Szechtman, H. (2015). 5-HT2A/C receptors do not mediate the attenuation of compulsive checking by mCPP in the quinpirole sensitization rat model of obsessive–compulsive disorder (OCD). Behavioural Brain Research, 279, 211–217.CrossRefPubMedGoogle Scholar
  204. Uday, G., Pravinkumar, B., Manish, W., & Sudhir, U. (2007). LHRH antagonist attenuates the effect of fluoxetine on marble-burying behavior in mice. European Journal of Pharmacology, 563, 155–159. CrossRefPubMedGoogle Scholar
  205. Umathe, S., Bhutada, P., Dixit, P., & Shende, V. (2008). Increased marble-burying behavior in ethanol-withdrawal state: Modulation by gonadotropin-releasing hormone agonist. European Journal of Pharmacology, 587, 175–180. CrossRefPubMedGoogle Scholar
  206. Umathe, S. N., Manna, S. S. S., & Jain, N. S. (2012). Endocannabinoid analogues exacerbate marble-burying behavior in mice via TRPV1 receptor. Neuropharmacology, 62, 2024–2033. CrossRefPubMedGoogle Scholar
  207. Umathe, S. N., Vaghasiya, J. M., Jain, N. S., & Dixit, P. V. (2009). Neurosteroids modulate compulsive and persistent behavior in rodents: Implications for obsessive–compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33, 1161–1166. CrossRefGoogle Scholar
  208. van den Heuvel, O. A., van der Werf, Y. D., Verhoef, K. M., de Wit, S., Berendse, H. W., Wolters, E. C., ... Groenewegen, H. J. (2010). Frontal–striatal abnormalities underlying behaviours in the compulsive–impulsive spectrum. Journal of the Neurological Sciences, 289, 55–59.Google Scholar
  209. van der Staay, F. J. (2006). Animal models of behavioral dysfunctions: Basic concepts and classifications, and an evaluation strategy. Brain Research Reviews, 52, 131–159. CrossRefPubMedGoogle Scholar
  210. Varga, O. E., Hansen, A. K., Sandøe, P., & Olsson, I. A. S. (2010). Validating animal models for preclinical research: A scientific and ethical discussion. Alternatives to Laboratory Animals, 38, 245–248.PubMedGoogle Scholar
  211. Veale, D., & Roberts, A. (2014). Obsessive-compulsive disorder. BMJ, 348, g2183.CrossRefPubMedGoogle Scholar
  212. Weber, J. N., & Hoekstra, H. E. (2009). The evolution of burrowing behaviour in deer mice (genus Peromyscus). Animal Behaviour, 77, 603–609.CrossRefGoogle Scholar
  213. Webster, D. G., Williams, M. H., Owens, R. D., Geiger, V. B., & Dewsbury, D. A. (1981). Digging behavior in 12 taxa of muroid rodents. Animal Learning & Behavior, 9, 173–177.CrossRefGoogle Scholar
  214. Wegener, G., Volke, V., & Rosenberg, R. (2000). Endogenous nitric oxide decreases hippocampal levels of serotonin and dopamine in vivo. British Journal of Pharmacology, 130, 575–580.CrossRefPubMedPubMedCentralGoogle Scholar
  215. Welch, J. M., Lu, J., Rodriguiz, R. M., Trotta, N. C., Peca, J., Ding, J.-D., ... Luo, J. (2007). Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature, 448, 894–900.Google Scholar
  216. Westenberg, H. G., Fineberg, N. A., Denys, D. (2007). Neurobiology of obsessive–compulsive disorder: Serotonin and beyond. CNS Spectrums, 12, 14–27.CrossRefGoogle Scholar
  217. Willner, P. (1984). The validity of animal models of depression. Psychopharmacology, 83, 1–16.CrossRefPubMedGoogle Scholar
  218. Wolmarans, D. W., Stein, D. J., & Harvey, B. H. (2016). Of mice and marbles: Novel perspectives on burying behavior as a screening test for psychiatric illness. Cognitive, Affective, & Behavioral Neuroscience, 16, 551–560. CrossRefGoogle Scholar
  219. Wolmarans, D. W., Stein, D. J., & Harvey, B. H. (2017). Social behavior in deer mice as a novel interactive paradigm of relevance for obsessive–compulsive disorder (OCD). Social Neuroscience, 12, 135–149.CrossRefPubMedGoogle Scholar
  220. Yadin, E., Friedman, E., & Bridger, W. H. (1991). Spontaneous alternation behavior: An animal model for obsessive–compulsive disorder? Pharmacology Biochemistry and Behavior, 40, 311–315.CrossRefGoogle Scholar
  221. Yamada, K., Wada, E., Yamano, M., Sun, Y. J., Ohara-Imaizumi, M., Nagamatsu, S., & Wada, K. (2002). Decreased marble burying behavior in female mice lacking neuromedin-B receptor (NMB-R) implies the involvement of NMB/NMB-R in 5-HT neuron function. Brain Research, 942, 71–78. CrossRefPubMedGoogle Scholar
  222. Yang, X.-C., & Reis, D. J. (1999). Agmatine selectively blocks then-methyl-d-aspartate subclass of glutamate receptor channels in rat hippocampal neurons. Journal of Pharmacology and Experimental Therapeutics, 288, 544–549.PubMedGoogle Scholar
  223. Yehuda, R. (2002). Post-traumatic stress disorder. New England Journal of Medicine, 346, 108–114.CrossRefPubMedGoogle Scholar
  224. Young, R., Batkai, S., Dukat, M., & Glennon, R. A. (2006). TDIQ (5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinoline) exhibits anxiolytic-like activity in a marble-burying assay in mice. Pharmacology Biochemistry and Behavior, 84, 62–73. CrossRefGoogle Scholar
  225. Zohar, J., Mueller, E. A., Insel, T. R., Zohar-Kadouch, R. C., & Murphy, D. L. (1987). Serotonergic responsivity in obsessive–compulsive disorder: Comparison of patients and healthy controls. Archives of General Psychiatry, 44, 946–951.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Geoffrey de Brouwer
    • 1
  • Arina Fick
    • 1
  • Brian H. Harvey
    • 1
    • 2
  • De Wet Wolmarans
    • 1
    Email author
  1. 1.Center of Excellence for Pharmaceutical SciencesNorth-West UniversityPotchefstroomSouth Africa
  2. 2.MRC Unit on Risk and Resilience in Mental DisordersNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations