Advertisement

Is it impossible to acquire absolute pitch in adulthood?

  • Yetta Kwailing WongEmail author
  • Kelvin F. H. Lui
  • Ken H. M. Yip
  • Alan C.-N. WongEmail author
Article

Abstract

Absolute pitch (AP) refers to the rare ability to name the pitch of a tone without external reference. It is widely believed to be only for the selected few with rare genetic makeup and early musical training during the critical period, and therefore acquiring AP in adulthood is impossible. Previous studies have not offered a strong test of the effect of training because of issues like small sample size and insufficient training. In three experiments, adults learned to name pitches in a computerized, gamified and personalized training protocol for 12 to 40 hours, with the number of pitches gradually increased from three to twelve. Across the three experiments, the training covered different octaves, timbre, and training environment (inside or outside laboratory). AP learning showed classic characteristics of perceptual learning, including generalization of learning dependent on the training stimuli, and sustained improvement for at least one to three months. 14% of the participants (6 out of 43) were able to name twelve pitches at 90% or above accuracy, comparable to that of ‘AP possessors’ as defined in the literature. Overall, AP continues to be learnable in adulthood, which challenges the view that AP development requires both rare genetic predisposition and learning within the critical period. The finding calls for reconsideration of the role of learning in the occurrence of AP, and pushes the field to pinpoint and explain the differences, if any, between the aspects of AP more trainable in adulthood and the aspects of AP that are potentially exclusive for the few exceptional AP possessors observed in the real world.

Keywords

Absolute pitch Pitch perception Musical training Perceptual learning Perceptual expertise Critical period 

Notes

Acknowledgements

The authors declare no conflict of interest. We thank Gabriel Chan Pak Hong and Michael Lai Wei Chun for their help in data collection, Mandy Chu Yan Ting for the technical support, Helen Wong Hoi Shan for her help in violin tone production, and Patrick Bermudez for providing the synthetic tones.

Open Practices Statement

The data and materials for all experiments are available at https://osf.io/tkrgb/files. None of the experiments was preregistered.

Authors Contributions

Y. Wong and A. Wong developed the study concept and designed the study. Y. Wong collected the data. Y. Wong, K. Lui and K. Yip analyzed the data. Y. Wong, K. Lui and A. Wong drafted the manuscript. All authors approved the final version of the manuscript for submission.

Supplementary material

13414_2019_1869_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1880 kb)

References

  1. Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8(10), 457–464.  https://doi.org/10.1016/j.tics.2004.08.011 CrossRefPubMedGoogle Scholar
  2. Athos, E. A., Levinson, B., Kistler, A., Zemansky, J., Bostrom, A., Freimer, N., & Gitschier, J. (2007). Dichotomy and perceptual distortions in absolute pitch ability. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14795–14800.  https://doi.org/10.1073/pnas.0703868104 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bachem, A. (1940). The Genesis of Absolute Pitch. The Journal of the Acoustical Society of America, 11, 434:  https://doi.org/10.1121/1.1916056 CrossRefGoogle Scholar
  4. Baharloo, S., Johnston, P. A, Service, S. K., Gitschier, J., & Freimer, N. B. (1998). Absolute pitch: an approach for identification of genetic and nongenetic components. American Journal of Human Genetics, 62(2), 224–231.  https://doi.org/10.1086/301704 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baharloo, S., Serviceko, S. K., Risch, N., Gitschier, J., & Freimer, N. B. (2000). Familial Aggregation of Absolute Pitch. The American Journal of Human Genetics, 67(3), 755–758.  https://doi.org/10.1086/303057 CrossRefPubMedGoogle Scholar
  6. Banai, K., & Lavner, Y. (2014). The effects of training length on the perceptual learning of time-compressed speech and its generalization. The Journal of the Acoustical Society of America, 136(4), 1908–1917.  https://doi.org/10.1121/1.4895684 CrossRefPubMedGoogle Scholar
  7. Bermudez, P., Lerch, J. P., Evans, A. C., & Zatorre, R. J. (2009). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19, 1583-1596.CrossRefGoogle Scholar
  8. Bermudez, P., & Zatorre, R. J. (2005). Conditional associative memory for musical stimuli in nonmusicians: implications for absolute pitch. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 25(34), 7718–7723.  https://doi.org/10.1523/JNEUROSCI.1560-05.2005 CrossRefGoogle Scholar
  9. Bermudez, P., & Zatorre, R. J. (2009). A Distribution of Absolute Pitch Ability as Revealed by Computerized Testing. Music Perception, 27(2), 89–101.  https://doi.org/10.1525/mp.2009.27.2.89 CrossRefGoogle Scholar
  10. Bor, D., Rothen, N., Schwartzman, D. J., Clayton, S., & Seth, A. K. (2015). Adults Can Be Trained to Acquire Synesthetic Experiences. Scientific Reports, 4(1), 7089.  https://doi.org/10.1038/srep07089 CrossRefGoogle Scholar
  11. Brady, P. T. (1970). Fixed-Scale Mechanism of Absolute Pitch. The Journal of the Acoustical Society of America, 48(4B), 883–887.  https://doi.org/10.1121/1.1912227 CrossRefPubMedGoogle Scholar
  12. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.CrossRefGoogle Scholar
  13. Brancucci, A., Dipinto, R., Mosesso, I., & Tommasi, L. (2009). Vowel identity between note labels confuses pitch identification in non-absolute pitch possessors. PloS One, 4(7), e6327.  https://doi.org/10.1371/journal.pone.0006327 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Carroll, J. B. (1975). Speed and accuracy of absolute pitch judgments: some latter-day results. ETS Research Bulletin Series, 1975(2), 0i–71.  https://doi.org/10.1002/j.2333-8504.1975.tb01075.x CrossRefGoogle Scholar
  15. Chin, C. S. (2003). The development of absolute pitch: a theory concerning the roles of music training at an early developmental age and individual cognitive style. Psychology of Music, 31(2), 155–171.  https://doi.org/10.1177/0305735603031002292 CrossRefGoogle Scholar
  16. Chung, S. T. L., & Truong, S. R. (2013). Learning to identify crowded letters: Does the learning depend on the frequency of training? Vision Research, 77, 41–50.  https://doi.org/10.1016/j.visres.2012.11.009 CrossRefPubMedGoogle Scholar
  17. Crozier, J. B. (1997). Absolute Pitch: Practice Makes Perfect, the Earlier the Better. Psychology of Music.  https://doi.org/10.1177/0305735697252002 CrossRefGoogle Scholar
  18. Cuddy, L. L. (1968). Practice effects in the absolute judgment of pitch. The Journal of the Acoustical Society of America, 43, 1069–1076.  https://doi.org/10.1121/1.1910941 CrossRefPubMedGoogle Scholar
  19. Cuddy, L. L. (1970). Training the absolute identification of pitch. Perception & Psychophysics, 8(5A), 265–269.CrossRefGoogle Scholar
  20. Daly, H. R., & Hall, M. D. (2018). Not all musicians are created equal: Statistical concerns regarding the categorization of participants. Psychomusicology: Music, Mind, and Brain, 28(2), 117–126.  https://doi.org/10.1037/pmu0000213 CrossRefGoogle Scholar
  21. Daw, N. W. (1998). Critical Periods and Amblyopia. Archives of Ophthalmology, 116(4), 502.  https://doi.org/10.1001/archopht.116.4.502 CrossRefPubMedGoogle Scholar
  22. Deutsch, D. (1995). Musical illusions and paradoxes. La Jolla, CA: Philomel Records. (compact disc).Google Scholar
  23. Deutsch, D. (2002). The puzzle of absolute pitch. Current Directions in Psychological Science, 11(6), 200–204.CrossRefGoogle Scholar
  24. Deutsch, D. (2013). Absolute Pitch. In The Psychology of Music (pp. 141–182).  https://doi.org/10.1016/B978-0-12-381460-9.00005-5 CrossRefGoogle Scholar
  25. Deutsch, D., Dooley, K., Henthorn, T., & Head, B. (2009). Absolute pitch among students in an American music conservatory: Association with tone language fluency. The Journal of the Acoustical Society of America, 125(4), 2398–2403.  https://doi.org/10.1121/1.3081389 CrossRefPubMedGoogle Scholar
  26. Deutsch, D., Hamaoui, K., & Henthorn, T. (2007). The glissando illusion and handedness. Neuropsychologia, 45, 2981–2988.  https://doi.org/10.1016/j.neuropsychologia.2007.05.015 CrossRefPubMedGoogle Scholar
  27. Deutsch, D., Henthorn, T., & Dolson, M. (2004). Absolute Pitch, Speech, and Tone Language: Some Experiments and a Proposed Framework. Music Perception, 21(3), 339–356.  https://doi.org/10.1525/mp.2004.21.3.339 CrossRefGoogle Scholar
  28. Deutsch, D., Henthorn, T., Marvin, E., & Xu, H. (2006). Absolute pitch among American and Chinese conservatory students: Prevalence differences, and evidence for a speech-related critical period. The Journal of the Acoustical Society of America, 119(2), 719.  https://doi.org/10.1121/1.2151799 CrossRefPubMedGoogle Scholar
  29. Drayna, D. (2007). Absolute pitch: a special group of ears. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14549–14550.  https://doi.org/10.1073/pnas.0707287104 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fahle, M., & Poggio, T. (2002). Perceptual learning. Massachusetts: MIT Press.CrossRefGoogle Scholar
  31. Fiorentini, A., & Berardi, N. (1980). Perceptual learning specific for orientation and spatial frequency. Nature, 287(5777), 43–44. Retrieved from  https://doi.org/10.1038/287043a0 CrossRefGoogle Scholar
  32. Flege, J. E., Munro, M. J., & MacKay, I. R. A. (1995). Factors affecting strength of perceived foreign accent in a second language. The Journal of the Acoustical Society of America, 97(5), 3125–3134.  https://doi.org/10.1121/1.413041 CrossRefPubMedGoogle Scholar
  33. Fujioka, T., Ross, B., Kakigi, R., Pantev, C., & Trainor, L. J. (2006). One year of musical training affects development of auditory cortical-evoked fields in young children. Brain, 129, 2593–2608.  https://doi.org/10.1093/brain/awl247 CrossRefPubMedGoogle Scholar
  34. Gathercole, S. E., & Baddeley, D. A. (1990). Phonological memory deficits in language-disordered children: Is there a causal connection? Journal of Memory and Language, 29, 336–360.CrossRefGoogle Scholar
  35. Gervain, J., Vines, B. W., Chen, L. M., Seo, R. J., Hensch, T. K., Werker, J. F., & Young, A. H. (2013). Valproate reopens critical-period learning of absolute pitch. Frontiers in Systems Neuroscience, 7, 102.  https://doi.org/10.3389/fnsys.2013.00102 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Goldstone, R. (1998). Perceptual learning. Annual Review of Psychology, 49, 585–612.CrossRefGoogle Scholar
  37. Gregersen, P. K., Kowalsky, E., Kohn, N., & Marvin, E. W. (1999). Absolute Pitch: Prevalence, Ethnic Variation, and Estimation of the Genetic Component. The American Journal of Human Genetics, 65(3), 911–913.  https://doi.org/10.1086/302541 CrossRefPubMedGoogle Scholar
  38. Gregersen, P. K., Kowalsky, E., Kohn, N., & Marvin, E. W. (2001). Early childhood music education and predisposition to absolute pitch: Teasing apart genes and environment. American Journal of Medical Genetics, 98(3), 280–282.  https://doi.org/10.1002/1096-8628(20010122)98:3<280::AID-AJMG1083>3.0.CO;2-6 CrossRefPubMedGoogle Scholar
  39. Gregersen, P. K., Kowalsky, E., Lee, A., Baron-Cohen, S., Fisher, S. E., Asher, J. E., … Li, W. (2013). Absolute pitch exhibits phenotypic and genetic overlap with synesthesia. Human Molecular Genetics, 22(10), 2097–2104.  https://doi.org/10.1093/hmg/ddt059 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Halpern, A. R. (1989). Memory for the absolute pitch of familiar songs. Memory & Cognition, 17, 572–581.CrossRefGoogle Scholar
  41. Hantz, E. C., Crummer, G. C., Wayman, J. W., Walton, J. P., & Frisina, R. D. (1992). Effects of musical training and absolute pitch on the neural processing of melodic intervals: A P3 event-related potential study. Music Perception, 10(1), 25–42. Retrieved from http://www.jstor.org/stable/10.2307/40285536 CrossRefGoogle Scholar
  42. Hartman, E. B. (1954). The influence of practice and pitch-distance between tones on the absolute identification of pitch. The American Journal of Psychology, 67(1), 1–14.  https://doi.org/10.2307/1418067 CrossRefPubMedGoogle Scholar
  43. Hedger, S. C., Heald, S. L. M., & Nusbaum, H. C. (2013). Absolute pitch may not be so absolute. Psychological Science, 24(8), 1496–1502.  https://doi.org/10.1177/0956797612473310 CrossRefPubMedGoogle Scholar
  44. Hirose, H., Kubota, M., Kimura, I., Ohsawa, M., Yumoto, M., & Sakakihara, Y. (2002). People with absolute pitch process tones with producing P300. Neuroscience Letters, 330(3), 247–250.  https://doi.org/10.1016/S0304-3940(02)00812-1 CrossRefPubMedGoogle Scholar
  45. Ho, Y. C., Cheung, M. C., & Chan, A. S. (2003). Music training improves verbal but not visual memory: Cross-sectional and longitudinal explorations in children. Neuropsychology.  https://doi.org/10.1037/0894-4105.17.3.439 CrossRefGoogle Scholar
  46. Hooks, B. M., & Chen, C. (2007). Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron, 56(2), 312–326.  https://doi.org/10.1016/j.neuron.2007.10.003 CrossRefPubMedGoogle Scholar
  47. Hubel, D. H., & Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. The Journal of Physiology, 206(2), 419–436.  https://doi.org/10.1113/jphysiol.1970.sp009022 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Itoh, K., Suwazono, S., Arao, H., Miyazaki, K., & Nakada, T. (2005). Electrophysiological correlates of absolute pitch and relative pitch. Cerebral Cortex (New York, N.Y. : 1991), 15(6), 760–769.  https://doi.org/10.1093/cercor/bhh177 CrossRefGoogle Scholar
  49. Jäncke, L., Langer, N., & Hänggi, J. (2012). Diminished Whole-brain but Enhanced Peri-sylvian Connectivity in Absolute Pitch Musicians. Journal of Cognitive Neuroscience, 24(6), 1447–1461.CrossRefGoogle Scholar
  50. Karni, A., & Sagi, D. (1993). The time course of learning a visual skill. Nature, 365(6443), 250–252. Retrieved from  https://doi.org/10.1038/365250a0 CrossRefGoogle Scholar
  51. Keenan, J. P., Thangaraj, V., Halpern, A. R., & Schlaug, G. (2001). Absolute pitch and planum temporale. NeuroImage, 14(6), 1402–1408.  https://doi.org/10.1006/nimg.2001.0925 CrossRefPubMedGoogle Scholar
  52. Klein, M., Coles, M. G. H., & Donchin, E. (1984). People with Absolute Pitch Process Tones Without Producing a P300. Science, 223(4642), 1306–1309.  https://doi.org/10.1126/science.223.4642.1306 CrossRefPubMedGoogle Scholar
  53. Knudsen, E. I. (2004). Sensitive Periods in the Development of the Brain and Behavior. Journal of Cognitive Neuroscience, 16(8), 1412–1425.  https://doi.org/10.1162/0898929042304796 CrossRefPubMedGoogle Scholar
  54. Kraus, N., & Banai, K. (2007). Auditory-processing malleability: Focus on language and music. Current Directions in Psychological Science, 16(2), 105–110.  https://doi.org/10.1111/j.1467-8721.2007.00485.x CrossRefGoogle Scholar
  55. Lenhoff, H. M., Perales, O., & Hickok, G. (2001). Absolute Pitch in Williams Syndrome. Music Perception, 18(4), 491–503.  https://doi.org/10.1525/mp.2001.18.4.491 CrossRefGoogle Scholar
  56. Levitin, D. J. (1994). Absolute memory for musical pitch: evidence from the production of learned melodies. Perception & Psychophysics, 56, 414–423.  https://doi.org/10.3758/BF03206733 CrossRefGoogle Scholar
  57. Levitin, D. J., & Rogers, S. E. (2005). Absolute pitch: perception, coding, and controversies. Trends in Cognitive Sciences, 9(1), 26–33.  https://doi.org/10.1016/j.tics.2004.11.007 CrossRefPubMedGoogle Scholar
  58. Loui, P., Li, H. C., Hohmann, A., & Schlaug, G. (2011). Enhanced cortical connectivity in absolute pitch musicians: A model for local hyperconnectivity. Journal of Cognitive Neuroscience, 23(4), 1015–1026.  https://doi.org/10.1162/jocn.2010.21500 CrossRefPubMedGoogle Scholar
  59. Loui, P., Zamm, A., & Schlaug, G. (2012). Enhanced functional networks in absolute pitch. NeuroImage, 63(2), 632–640.  https://doi.org/10.1016/j.neuroimage.2012.07.030 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lundin, R. W. (1963). Can perfect pitch be learned? Music Educators Journal, 49(5), 49–51.CrossRefGoogle Scholar
  61. MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7(1), 19–40.  https://doi.org/10.1037/1082-989X.7.1.19 CrossRefPubMedGoogle Scholar
  62. Maurer, D., & Mondloch, C. J. (2006). The infant as synesthete? In Processes of change in brain and cognitive development: Attention and performance XXI (pp. 449–471).Google Scholar
  63. Meyer, M. (1899). Is the memory of absolute pitch capable of development by training? Psychological Review.  https://doi.org/10.1037/h0069034 CrossRefGoogle Scholar
  64. Miyazaki, K. (1989). Absolute pitch identification: Effects of timbre and pitch region. Music Perception, 7, 1–14.CrossRefGoogle Scholar
  65. Miyazaki, K. (1990). The Speed of Musical Pitch Identification Possessors by Absolute-Pitch Possessors. Music Perception, 8(2), 177–188.  https://doi.org/10.2307/40285495 CrossRefGoogle Scholar
  66. Miyazaki, K., & Ogawa, Y. (2006). Learning Absolute Pitch by Children. Music Perception.  https://doi.org/10.1525/mp.2006.24.1.63 CrossRefGoogle Scholar
  67. Mull, H. K. (1925). The acquisition of absolute pitch. Am. J. Psychol, 36, 469–493.CrossRefGoogle Scholar
  68. Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. J Exp Psychol Gen, 115(1), 39-61. Retrieved from http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=2937873 CrossRefGoogle Scholar
  69. Nosofsky, R. M. (1987). Attention and learning processes in the identification and categorization of integral stimuli. J Exp Psychol Learn Mem Cogn, 13(1), 87-108. Retrieved from http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=2949055 CrossRefGoogle Scholar
  70. Oechslin, M. S., Imfeld, A., Loenneker, T., Meyer, M., & Jäncke, L. (2009). The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study. Frontiers in Human Neuroscience, 3(February), 76.  https://doi.org/10.3389/neuro.09.076.2009 CrossRefPubMedGoogle Scholar
  71. Ohnishi, T., Matsuda, H., Asada, T., Aruga, M., Hirakata, M., Nishikawa, M., … Imabayashi, E. (2001). Functional anatomy of musical perception in musicians. Cereb Cortex, 11(8), 754–760. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=11459765 CrossRefGoogle Scholar
  72. Palmeri, T., & Gauthier, I. (2004). Visual object understanding. Nat Rev Neurosci, 5(4), 291–303.  https://doi.org/10.1038/nrn1364 CrossRefPubMedGoogle Scholar
  73. Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392(6678), 811–814.  https://doi.org/10.1038/33918 CrossRefPubMedGoogle Scholar
  74. Patkowski, M. S. (1990). Age and Accent in a Second Language: A Reply to James Emil Flege. Applied Linguistics, 11(1), 73–89.  https://doi.org/10.1093/applin/11.1.73 CrossRefGoogle Scholar
  75. Pelli, D. G. (1997). The videotoolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437–442.CrossRefGoogle Scholar
  76. Peterson, L. R., & Peterson, M. J. (1959). Short-term retention of individual items. Journal of Experimental Psychology, 61, 12–21.Google Scholar
  77. Rauscher, F., Shaw, G., Levine, L., Wright, E., Dennis, W., & Newcomb, R. (1997). Music training causes long-term enhancement of preschool children’s spatial–temporal reasoning. Neurological Research, 19(1), 2–8.  https://doi.org/10.1080/01616412.1997.11740765 CrossRefPubMedGoogle Scholar
  78. Rogenmoser, L., Elmer, S., & Jäncke, L. (2015). Absolute pitch: Evidence for early cognitive facilitation during passive listening as revealed by reduced P3a amplitudes. Journal of Cognitive Neuroscience, 27(3), 623–637.  https://doi.org/10.1162/jocn_a_00708 CrossRefPubMedGoogle Scholar
  79. Ross, D. a., Olson, I. R., Marks, L. E., & Gore, J. C. (2004). A nonmusical paradigm for identifying absolute pitch possessors. The Journal of the Acoustical Society of America, 116(3), 1793.  https://doi.org/10.1121/1.1758973 CrossRefPubMedGoogle Scholar
  80. Russo, F. A., Windell, D. L., & Cuddy, L. L. (2003). Learning the “Special Note”: Evidence for a Critical Period for Absolute Pitch Acquisition. Music Perception, 21(1), 119–127.  https://doi.org/10.1525/mp.2003.21.1.119 CrossRefGoogle Scholar
  81. Saffran, J. R., & Griepentrog, G. J. (2001). Absolute pitch in infant auditory learning: evidence for developmental reorganization. Developmental Psychology, 37(1), 74–85.  https://doi.org/10.1037/0012-1649.37.1.74 CrossRefPubMedGoogle Scholar
  82. Sakakibara, A. (2014). A longitudinal study of the process of acquiring absolute pitch: A practical report of training with the chord identification method.” Psychology of Music, 42(1), 86–111.  https://doi.org/10.1177/0305735612463948 CrossRefGoogle Scholar
  83. Sasaki, Y., Nanez, J. E., & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews. Neuroscience, 11, 53–60.  https://doi.org/10.1038/nrn2737 CrossRefPubMedGoogle Scholar
  84. Sathian, K., & Zangaladze, A. (1997). Tactile learning is task specific but transfers between fingers. Perception & Psychophysics, 59(1), 119–128.  https://doi.org/10.3758/BF03206854 CrossRefGoogle Scholar
  85. Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychological Science, 15(8), 511–514.  https://doi.org/10.1111/j.0956-7976.2004.00711.x CrossRefPubMedGoogle Scholar
  86. Schellenberg, E. G., & Trehub, S. E. (2003). Good pitch memory is widespread. Psychological Science, 14(3), 262–266. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12741751
  87. Schlaug, G., Jancke, L., Huang, Y., & Steinmetz, H. (1995). In vivo evidence of structural brain asymmetry in musicians. Science, 267(5198), 699–701.  https://doi.org/10.1126/science.7839149 CrossRefPubMedGoogle Scholar
  88. Schulze, K., Gaab, N., & Schlaug, G. (2009). Perceiving pitch absolutely: comparing absolute and relative pitch possessors in a pitch memory task. BMC Neuroscience, 10, 106.  https://doi.org/10.1186/1471-2202-10-106 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Scovel, T. (1988). A time to speak: A psycholinguistic inquiry into the critical period for human speech. Rowley, MA: Newbury House.Google Scholar
  90. Seitz, A. R., & Watanabe, T. (2009). The phenomenon of task-irrelevant perceptual learning. Vision Research, 49(21), 2604–2610.  https://doi.org/10.1016/j.visres.2009.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Sengpiel, F. (2007). The critical period. Current Biology, 17(17), R742–R743.  https://doi.org/10.1016/j.cub.2007.06.017 CrossRefPubMedGoogle Scholar
  92. Simons, D. J., & Land, P. W. (1987). Early experience of tactile stimulation influences organization of somatic sensory cortex. Nature, 326(6114), 694–697.  https://doi.org/10.1038/326694a0 CrossRefPubMedGoogle Scholar
  93. Singleton, D. (2001). Age and second language acquisition. Annual Review of Applied Linguistics, 21, 77–89.CrossRefGoogle Scholar
  94. Takeuchi, A H., & Hulse, S. H. (1993). Absolute pitch. Psychological Bulletin, 113(2), 345–361. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8451339 CrossRefGoogle Scholar
  95. Theusch, E., Basu, A., & Gitschier, J. (2009). Genome-wide Study of Families with Absolute Pitch Reveals Linkage to 8q24.21 and Locus Heterogeneity. The American Journal of Human Genetics, 85(1), 112–119.  https://doi.org/10.1016/j.ajhg.2009.06.010 CrossRefPubMedGoogle Scholar
  96. Trainor, L. J. (2005). Are there critical periods for musical development? Developmental Psychobiology, 46(3), 262–278.  https://doi.org/10.1002/dev.20059 CrossRefPubMedGoogle Scholar
  97. Tsushima, Y., Sasaki, Y., & Watanabe, T. (2006). Greater disruption due to failure of inhibitory control on an ambiguous distractor. Science, 314, 1786–1788.CrossRefGoogle Scholar
  98. Van Hedger, S. C., Heald, S. L. M., Koch, R., & Nusbaum, H. C. (2015). Auditory working memory predicts individual differences in absolute pitch learning. Cognition, 140, 95–110.  https://doi.org/10.1016/j.cognition.2015.03.012 CrossRefPubMedGoogle Scholar
  99. Vansteenkiste, M., Simons, J., Lens, W., Sheldon, K. M., & Deci, E. L. (2004). Motivating learning, performance, and persistence: the synergistic effects of intrinsic goal contents and autonomy-supportive contexts. Journal of Personality and Social Psychology, 87(2), 246–260.  https://doi.org/10.1037/0022-3514.87.2.246 CrossRefPubMedGoogle Scholar
  100. Vanzella, P., & Schellenberg, E. G. (2010). Absolute pitch: effects of timbre on note-naming ability. PloS One, 5(11), e15449.  https://doi.org/10.1371/journal.pone.0015449 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Ward, J. (2013). Synesthesia. Annual Review of Psychology, 64(1), 49–75.  https://doi.org/10.1146/annurev-psych-113011-143840 CrossRefPubMedGoogle Scholar
  102. Ward, W. D. (1999). Absolute Pitch. In D. Deutsch (Ed.), The Psychology of Music (pp. 265–298). Academic Press.Google Scholar
  103. Watanabe, T., Nanez, J. E., & Sasaki, Y. (2001). Perceptual learning without perception. Nature, 413(6858), 844-8. Retrieved from http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=11677607 CrossRefGoogle Scholar
  104. Watanabe, T., & Sasaki, Y. (2015). Perceptual Learning: Toward a Comprehensive Theory. Annual Review of Psychology, 66(1), 197–221.  https://doi.org/10.1146/annurev-psych-010814-015214 CrossRefPubMedGoogle Scholar
  105. Wedell, C. H. (1934). The nature of the absolute judgment of pitch. Journal of Experimental Psychology, 17(4), 485–503.  https://doi.org/10.1037/h0070761 CrossRefGoogle Scholar
  106. Wengenroth, M., Blatow, M., Heinecke, A., Reinhardt, J., Stippich, C., Hofmann, E., & Schneider, P. (2013). Increased Volume and Function of Right Auditory Cortex as a Marker for Absolute Pitch. Cerebral Cortex, 24(May), 1127–1137.  https://doi.org/10.1093/cercor/bhs391 CrossRefPubMedGoogle Scholar
  107. West Marvin, E., VanderStel, J., & Siu, J. C.-S. (2019). In their own words: Analyzing the extents and origins of absolute pitch. Psychology of Music, 030573561983295.  https://doi.org/10.1177/0305735619832959
  108. Wiesel, T. N., & Hubel, D. H. (1963). Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. Journal of Neurophysiology, 26(6), 978–993.  https://doi.org/10.1152/jn.1963.26.6.978 CrossRefPubMedGoogle Scholar
  109. Wilson, D. A., & Stevenson, R. J. (2003). Olfactory perceptual learning: the critical role of memory in odor discrimination. Neuroscience & Biobehavioral Reviews, 27(4), 307–328.  https://doi.org/10.1016/S0149-7634(03)00050-2 CrossRefGoogle Scholar
  110. Wilson, S. J., Lusher, D., Wan, C. Y., Dudgeon, P., & Reutens, D. C. (2009). The neurocognitive components of pitch processing: insights from absolute pitch. Cerebral Cortex (New York, N.Y. : 1991), 19(3), 724–732.  https://doi.org/10.1093/cercor/bhn121 CrossRefGoogle Scholar
  111. Wong, A. C.-N., Palmeri, T., & Gauthier, I. (2009). Conditions for face-like expertise with objects: Becoming a Ziggerin expert - but which type? Psychological Science, 20(9), 1108–1117.CrossRefGoogle Scholar
  112. Wong, Y. K., Folstein, J. R., & Gauthier, I. (2011). Task-irrelevant perceptual expertise. Journal of Vision.  https://doi.org/10.1167/11.14.3 CrossRefGoogle Scholar
  113. Wong, Y. K., & Wong, A. C.-N. (2014). Absolute pitch memory: Its prevalence among musicians and dependence on the testing context. Psychonomic Bulletin & Review, 21, 534–542.  https://doi.org/10.3758/s13423-013-0487-z CrossRefGoogle Scholar
  114. Wright, B. A., Buonomano, D. V, Mahncke, H. W., & Merzenich, M. M. (1997). Learning and generalization of auditory temporal-interval discrimination in humans. Journal of Neuroscience, 17(10), 3956–3963.CrossRefGoogle Scholar
  115. Wu, C., Kirk, I. J., Hamm, J. P., & Lim, V. K. (2008). The neural networks involved in pitch labeling of absolute pitch musicians. Neuroreport, 19(8), 851–854.CrossRefGoogle Scholar
  116. Zatorre, R. J. (2003). Absolute pitch: a model for understanding the influence of genes and development on neural and cognitive function. Nature Neuroscience, 6(7), 692–695.  https://doi.org/10.1038/nn1085 CrossRefPubMedGoogle Scholar
  117. Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3172–3177.CrossRefGoogle Scholar
  118. Zeanah, C. H., Gunnar, M. R., McCall, R. B., Kreppner, J. M., & Fox, N. A. (2011). VI. SENSITIVE PERIODS. Monographs of the Society for Research in Child Development, 76(4), 147–162.  https://doi.org/10.1111/j.1540-5834.2011.00631.x CrossRefPubMedPubMedCentralGoogle Scholar
  119. Zhang, L. I., Bao, S., & Merzenich, M. M. (2002). Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proceedings of the National Academy of Sciences, 99(4), 2309–2314.  https://doi.org/10.1073/pnas.261707398 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of Educational Psychology, Faculty of EducationThe Chinese University of Hong KongShatinHong Kong
  2. 2.Department of PsychologyThe Chinese University of Hong KongShatinHong Kong

Personalised recommendations