Attention, Perception, & Psychophysics

, Volume 81, Issue 7, pp 2330–2342 | Cite as

Embodied gestalts: Unstable visual phenomena become stable when they are stimuli for competitive action selection

  • Dobromir G. DotovEmail author
  • Michael T. Turvey
  • Till D. Frank
Time for Action: Reaching for a Better Understanding of the Dynamics of Cognition


An animal’s environment is rich with affordances. Different possible actions are specified by visual information while competing for dominance over neural dynamics. Affordance competition models account for this in terms of winner-takes-all cross-inhibition dynamics. Multistable phenomena also reveal how the visual system deals with ambiguity. Their key property is spontaneous instability, in forms such as alternating dominance in binocular rivalry. Theoretical models of self-inhibition or self-organized instability posit that the instability is tied to some kind of neural adaptation and that its functional significance is to enable flexible perceptual transitions. We hypothesized that the two perspectives are interlinked. Spontaneous instability is an intrinsic property of perceptual systems, but it is revealed when they are stripped from the constraints of possibilities for action. To test this, we compared a multistable gestalt phenomenon against its embodied version and estimated the neural adaptation and competition parameters of an affordance transition dynamic model. Wertheimer’s (Zeitschrift fur Psychologie 61, 161–265, 1912) optimal (β) and pure (φ) forms of apparent motion from a stroboscopic point-light display were endowed with action relevance by embedding the display in a visual object-tracking task. Thus, each mode was complemented by its action, because each perceptual mode uniquely enabled different ways of tracking the target. Perceptual judgment of the traditional apparent motion exhibited spontaneous instabilities, in the form of earlier switching when the frame rate was changed stepwise. In contrast, the embodied version exhibited hysteresis, consistent with affordance transition studies. Consistent with our predictions, the parameter for competition between modes in the affordance transition model increased, and the parameter for self-inhibition vanished.


Action selection Affordances Multistable phenomena Perceptual rivalry Perceptual instabilities Transient neural dynamics 



  1. Anderson, M. L. (2015). Beyond componential constitution in the brain: Starburst amacrine cells and enabling constraints. In T. Metzinger & J. M. Windt (Eds). Open MIND (Article 1). Frankfurt am Main, Germany: MIND Group. CrossRefGoogle Scholar
  2. Beets, I. A. M., Rösler, F., Henriques, D. Y. P., Einhäuser, W., & Fiehler, K. (2010). Online action-to-perception transfer: Only percept-dependent action affects perception. Vision Research, 50, 2633–2641.PubMedGoogle Scholar
  3. Blake, R., & Logothetis, N. K. (2002). Visual competition. Nature Reviews Neuroscience, 3, 13–21. CrossRefPubMedGoogle Scholar
  4. Braddick, O. (2018). Illusion research: An infantile disorder? Perception, 47, 805–806. CrossRefPubMedGoogle Scholar
  5. Brainard, D. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bystritsky, A., Nierenberg, A. A., Feusner, J. D., & Rabinovich, M. (2012). Computational non-linear dynamical psychiatry: A new methodological paradigm for diagnosis and course of illness. Journal of Psychiatric Research, 46, 428–435.PubMedGoogle Scholar
  7. Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B, 362, 1585–99. CrossRefGoogle Scholar
  8. Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298. CrossRefPubMedPubMedCentralGoogle Scholar
  9. di Lollo, V. (1977). Temporal characteristics of iconic memory. Nature, 267, 241–243.PubMedGoogle Scholar
  10. di Lollo, V. (1980). Temporal integration in visual memory. Journal of Experimental Psychology: General, 109, 75–97.Google Scholar
  11. Ditzinger, T., & Haken, H. (1989). Oscillations in the perception of ambiguous patterns: A model based on synergetics, Biological Cybernetics, 61, 279–287.Google Scholar
  12. Domínguez-Hüttinger, E., Christodoulides, P., Miyauchi, K., Irvine, A. D., Okada-Hatakeyama, M., Kubo, M., & Tanaka, R. J. (2017). Mathematical modeling of atopic dermatitis reveals “double switch” mechanisms underlying four common disease phenotypes. Journal of Allergy and Clinical Immunology, 139. 1861–1872.PubMedGoogle Scholar
  13. Dotov, D. G., de Wit, M. M., & Nie, L. (2012). Understanding affordances: History and contemporary development of Gibson’s central concept. AVANT, 3, 28–39.Google Scholar
  14. Farrell, J. E., Putnam, T., & Shepard, R. N. (1984). Pursuit-locked apparent motion. Bulletin of the Psychonomic Society, 22(4), 345–348. Google Scholar
  15. Fitzpatrick, P., Carello, C., Schmidt, R. C., & Corey, D. (1994). Haptic and visual perception of an affordance for upright posture. Ecological Psychology, 6, 265–287.Google Scholar
  16. Frank, T. D., & Dotov, D. G. (2016). Coarse-grained order parameter dynamics of the synergetic computer and multistable perception in schizophrenia. In A. Pelster & G. Wunner (Eds.), Self-organization in complex systems: The past, present, and future of synergetics (pp. 247–262). Berlin: Springer.Google Scholar
  17. Frank, T. D., Profeta, V., & Harrison, H. (2015). Interplay between order-parameter and system parameter dynamics: considerations on perceptual–cognitive–behavioral mode–mode transitions exhibiting positive and negative hysteresis and on response times. Journal of Biological Physics, 41, 257–292.PubMedPubMedCentralGoogle Scholar
  18. Friston, K. J. (2000). The labile brain: II. Transients, complexity and selection. Philosophical Transactions of the Royal Society B, 355, 237–52.Google Scholar
  19. Friston, K., Breakspear, M., & Deco, G. (2012). Perception and self-organized instability. Frontiers in Computational Neuroscience, 6, 44. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gibson, J. J. (1954). The visual perception of objective motion and subjective movement. Psychological Review, 61, 304–314.PubMedGoogle Scholar
  21. Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.Google Scholar
  22. Haken, H. (1983). Synergetics, an introduction: Nonequilibrium phase transitions and self-organization in physics, chemistry, and biology (3rd ed.). New York, NY: Springer.Google Scholar
  23. Haken, H. (1991). Synergetic computers and cognition. Berlin, Germany: Springer.Google Scholar
  24. Haken, H. (1993). Advanced synergetics: Instability hierarchies of self-organizing systems and devices. New York, NY: Springer,Google Scholar
  25. Heft, H. (1993). A methodological note on overestimates of reaching distance: Distinguishing between perceptual and analytical judgments. Ecological Psychology, 5, 255–271.Google Scholar
  26. Heft, H. (2001). Ecological psychology in context. Mahwah, NJ: Erlbaum.Google Scholar
  27. Hock, H. S., Bukowski, L., Nichols, D. F., Huisman, A., & Rivera, M., (2005). Dynamical vs. judgmental comparison: Hysteresis effects in motion perception. Spatial Vision, 18, 317–335.PubMedGoogle Scholar
  28. Hock, H. S., & Ploeger, A. (2006). Linking dynamical perceptual decisions at different levels of description in motion pattern formation: Psychophysics. Perception & Psychophysics, 68, 505–514. CrossRefGoogle Scholar
  29. James, W. (1904). Does “consciousness” exist? Journal of Philosophy, Psychology and Scientific Methods, 1, 477–491.Google Scholar
  30. Keller, A. J., Houlton, R., Kampa, B. M., Lesica, N. A., Mrsic-Flogel, T. D., Keller, G. B., & Helmchen, F. (2017). Stimulus relevance modulates contrast adaptation in visual cortex. ELife, 6, 4–15. CrossRefGoogle Scholar
  31. Kim, N.-G., & Kim, H. (2017). Schizophrenia: An impairment in the capacity to perceive affordances. Frontiers in Psychology, 8, 1052. CrossRefPubMedPubMedCentralGoogle Scholar
  32. King, D. B., & Wertheimer, M. (2005). Max Wertheimer and Gestalt theory. Piscataway, NJ, US: Transaction.Google Scholar
  33. Kruse, P., Carmesin, H., Pahlke, L., Strüber, D., & Stadler, M. (1996). Continuous phase transitions in the perception of multistable visual patterns. Biological Cybernetics, 75, 321–330.PubMedGoogle Scholar
  34. Kruse, P., & Stadler, M. (1995). Ambiguity in mind and nature (Springer Series in Synergetics, Vol. 64). Berlin, Germany: Springer.Google Scholar
  35. Laing, C. R., & Chow, C. C. (2002). A spiking neuron model for binocular rivalry. Journal of Computational Neuroscience, 12, 39–53.PubMedGoogle Scholar
  36. Lerner, I., Bentin, S., Shriki, O., Andreason, N., Neely, J., Minzenberg, M., … Treves, A. (2012). Excessive attractor instability accounts for semantic priming in schizophrenia. PLoS ONE, 7, e40663. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lopresti-Goodman, S. M., Turvey, M. T., & Frank, T. D. (2011). Behavioral dynamics of the affordance “graspable”. Attention, Perception, & Psychophysics, 73, 1948–1965. CrossRefGoogle Scholar
  38. Lopresti-Goodman, S. M., Turvey, M. T., & Frank, T. D. (2013). Negative hysteresis in the behavioral dynamics of the affordance “graspable”. Attention, Perception, & Psychophysics, 75, 1075–1091.Google Scholar
  39. Maruya, K., Yang, E., & Blake, R. (2007). Voluntary action influences visual competition. Psychological Science, 18, 1090–1098.PubMedGoogle Scholar
  40. Pastukhov, A., García-Rodríguez, P. E., Haenicke, J., Guillamon, A., Deco, G., & Braun, J. (2013). Multistable perception balances stability and sensitivity. Frontiers in Computational Neuroscience, 7, 17, CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. CrossRefPubMedGoogle Scholar
  42. Pelli, D., & Zhang, L. (1991). Accurate control of contrast on microcomputer displays. Vision Research, 31, 1337–1350.PubMedGoogle Scholar
  43. Petrusz, S. C., & Turvey, M. T. (2010). On the distinctive features of ecological laws. Ecological Psychology, 22, 44–68.Google Scholar
  44. Pisarchik, A. N., Jaimes-Reátegui, R., Magallón-García, C. D., & Castillo-Morales, C. O. (2014). Critical slowing down and noise-induced intermittency in bistable perception: Bifurcation analysis. Biological Cybernetics 108, 397–404.PubMedGoogle Scholar
  45. Rabinovich, M. I., Muezzinoglu, M. K., Strigo, I., & Bystritsky, A. (2010). Dynamical principles of emotion–cognition interaction: Mathematical images of mental disorders. PLoS ONE, 5, e12547:1–10. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Raja, V., & Anderson, M. L. (2019). Behavior as an enabling constraint. In M. Viola & F. Calzavarini (Eds.), New challenges in philosophy of neuroscience (Studies on Mind and Brain). Berlin, Germany: Springer.Google Scholar
  47. Rietveld, E. (2008). The skillful body as a concernful system of possible actions: Phenomena and neurodynamics. Theory and Psychology, 18, 341–363.Google Scholar
  48. Rietveld, E., & Kiverstein, J. (2014). A rich landscape of affordances. Ecological Psychology, 26, 325–352.Google Scholar
  49. Rolls, E. T., Loh, M., Deco, G., & Winterer, G. (2008). Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nature Reviews Neuroscience, 9, 696–709. CrossRefPubMedGoogle Scholar
  50. Saltzman, E., & Caplan, D. (2015). A graph-dynamic perspective on coordinative structures, the role of affordance–effectivity relations in action selection, and the self-organization of complex activities. Ecological Psychology, 27, 300–309.Google Scholar
  51. Shaw, R. E., Flascher, O. M., & Mace, W. M. (1996). Dimensions of event perception. In W. Prinz & B. Bridgeman (Eds.), Handbook of perception and action, Vol. 1 (pp. 345–395). London, UK: Academic Press.Google Scholar
  52. Shioiri, S., & Cavanagh, P. (1992). Visual persistence of figures defined by relative motion. Vision Research, 32, 943–951.PubMedGoogle Scholar
  53. Skarda, C. A., & Freeman, W. J. (1987). How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences, 10, 161–173.Google Scholar
  54. Snow, J. C., Pettypiece, C. E., McAdam, T. D., McLean, A. D., Stroman, P. W., Goodale, M. A., & Culham, J. C. (2011). Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects. Scientific Reports, 1, 130:1–10. CrossRefGoogle Scholar
  55. Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and Applied, 74(11, Whole No 498), 1–29.Google Scholar
  56. Steinman, R., Pizlo, Z., & Pizlo, F. (2000). Phi is not beta, and why Wertheimer’s discovery launched the Gestalt revolution. Vision Research, 40, 2257–2264.PubMedGoogle Scholar
  57. Tass, P. A., Qin, L., Hauptmann, C., Dovero, S., Bezard, E., Boraud, T., & Meissner, W. G. (2012). Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Annals of Neurology, 72, 816–820.PubMedGoogle Scholar
  58. Thomas, L. E. (2015). Grasp posture alters visual processing biases near the hands. Psychological Science, 26, 625–632. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tuller, B., Case, P., Ding, M., & Kelso, J. (1994). The nonlinear dynamics of speech categorization. Journal of Experimental Psychology: Human Perception and Performance, 20, 3–13.PubMedGoogle Scholar
  60. van der Kamp, J., Savelsbergh, G. J., & Davis, W. E. (1998). Body-scaled ratio as a control parameter for prehension in 5-to 9-year-old children. Developmental Psychobiology, 33, 351–361.PubMedGoogle Scholar
  61. van Rooij, I., Bongers, R. M., & Haselager, W. P. F. G. (2002). A non-representational approach to imagined action. Cognitive Science, 26, 345–375.Google Scholar
  62. Warren, W. H. (1977). Visual information for object identity in apparent movement. Perception & Psychophysics, 21, 264–268. CrossRefGoogle Scholar
  63. Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10, 683–703. CrossRefPubMedGoogle Scholar
  64. Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113, 358–389. CrossRefPubMedGoogle Scholar
  65. Warren, W. H. (2012). Does this computational theory solve the right problem? Marr, Gibson, and the goal of vision. Perception, 41, 1053–1060. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Warren, W. H., Jr., & Whang, S. (1987). Visual guidance of walking through apertures: Body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance, 13, 371–383. CrossRefPubMedGoogle Scholar
  67. Welsh, T. N., Weeks, D. J., Chua, R., & Goodman, D. (2009). Perceptual–motor interaction: Some implications for human–computer interaction. In A. Sears & J. A. Jacko (Eds.), Human–computer interaction fundamentals. Boca Raton, FL: CRC Press.Google Scholar
  68. Wertheimer, M. (1912). Experimentelle Studien uber das Sehen von Bewegung. Zeitschrift fur Psychologie, 61, 161–265.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.LIVELab, Department of Psychology, Neuroscience & Behaviour and RHPCSMcMaster UniversityHamiltonCanada
  2. 2.University of ConnecticutStorrsUSA

Personalised recommendations