Attention, Perception, & Psychophysics

, Volume 81, Issue 7, pp 2177–2191 | Cite as

The role of transients in action observation

  • Geoff G. ColeEmail author
  • Timothy N. Welsh
  • Paul A. Skarratt
Time for Action: Reaching for a Better Understanding of the Dynamics of Cognition


A large number of studies have now described the various ways in which the observation of another person’s dynamic movement can influence the speed with which the observer is able to prepare a motor action themselves. The typical results are most often explained with reference to theories that link perception and action. Such theories argue that the cognitive structures associated with each share common representations. Consequently, action preparation and action observation are often said to be functionally equivalent. However, the dominance of these theories in explaining action observation effects has masked the potential contribution from processes associated with the detection of low-level “transients” resulting from observing a body movement, such as motion and sound. In the present review, we describe work undertaken in one particular action observation phenomenon (“social inhibition of return”) and show that the transient account provides the best explanation of the effect. We argue that future work should consider attention capture and orienting as a potential contributing factor to action observation effects more broadly.


Attentional capture Inhibition of return Motion: biological 



  1. Atkinson, M., Skarratt, P.A., Simpson, A., & Cole, G. G (2014). Is social IOR due to action co-representation? Acta Psychologica, 150, 85-93.PubMedGoogle Scholar
  2. Atkinson, M., Simpson, A., & Cole, G. G. (2018). Visual attention and action: How cueing, direct mapping and social interactions drive orienting. Psychonomic Bulletin and Review, 25, 1585-1605.PubMedGoogle Scholar
  3. Bekkering, H., Wohlschläger, A., & Gattis, G. (2000). Imitation of gestures in children is goal-directed. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 53(A), 153–164.PubMedGoogle Scholar
  4. Bennett, P. J., & Pratt, J. (2001). The spatial distribution of inhibition of return. Psychological Science, 12, 76–80.PubMedGoogle Scholar
  5. Binford, L. (1986). Human ancestors: Changing views of their behavior. Journal of Anthropological Archaeology, 3 235–57.Google Scholar
  6. Böckler, A., van der Wel, R.P., & Welsh, T.N. (2014). Catching eyes: Effects of social and non-social cues on attention capture. Psychological Science, 25, 720-727.PubMedGoogle Scholar
  7. Bouquet, C. A., Shipley, T. F., Capa, R. L., & Marshall, P. J. (2011). Motor contagion: Goal-directed actions are more contagious than non-goal-directed actions. Experimental Psychology, 58, 71-78.PubMedGoogle Scholar
  8. Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44, 124-143.PubMedGoogle Scholar
  9. Cole, G. G., Skarratt, P.A., & Billing R-C. (2012). Do action goals mediate social inhibition of return?. Psychological Research, 76, 736-746.PubMedGoogle Scholar
  10. Cole, G. G., Wright, D., Doneva, S. & Skarratt, P. A. (2015). When your decisions are not (quite) your own: Action observation influences free choices. PLoS ONE 10(5): e0127766.PubMedPubMedCentralGoogle Scholar
  11. Cole, G. G., & Kuhn, G. (2010). What the experimenter’s prime tells the observer’s brain. Attention, Perception & Psychophysics, 72, 1367-1376.Google Scholar
  12. Cole, G. G., Skarratt, P. A. & Kuhn, G. (2016). Real-person interaction in visual attention research. European Psychologist, 21, 141-149.Google Scholar
  13. Cole, G. G., Atkinson, M., D’Souza, A., Welsh, T. & Skarratt, P. A. (2018). Are goal states represented during kinematic imitation? Journal of Experimental Psychology: Human Perception and Performance, 44, 226-242.PubMedGoogle Scholar
  14. Cole, G. G., Kentridge, R. W., & Heywood, C. A. (2005). Object onset and parvocellular guidance of attentional allocation. Psychological Science, 16, 270-274.Google Scholar
  15. Collie, A., Maruff, P., Yucel, M., Currie, J., & Danckert, J. (2000). Spatiotemporal distribution of facilitation and inhibition of return arising from the reflexive orienting of covert attention. Journal of Experimental Psychology: Human Perception and Performance, 26, 1733–1745.PubMedGoogle Scholar
  16. Constable, M.D., de Grosbois, J., Lung, T., Tremblay, L., Pratt, J. & Welsh, T.N. (2017). Eye movements may cause motor contagion effects. Psychonomic Bulletin & Review, 24, 835-841.Google Scholar
  17. Cook, J., & Bird, G. (2011). Social attitudes differentially modulate imitation in adolescents and adults. Experimental Brain Research, 211, 601–612.PubMedPubMedCentralGoogle Scholar
  18. Cowper-Smith, C. D., Eskes, G., & Westwood, D. (2013). Motor inhibition of return can affect prepared reaching movements. Neuroscience letters, 541, 83–86.Google Scholar
  19. Dalmaso, M., Castelli, L., Scatturin, P., Carli, L., Todisco, P., Palomba, D., & Galfano, G. (2016). Altered social attention in anorexia nervosa during real social interaction. Scientific Reports, 6, 1–11.Google Scholar
  20. Diaz-Tula, A., Morimoto, C. H., & Ranvaud, R. D. (2015). A mathematical model of saccadic reaction time as a function of the fixation point brightness gain. Attention, Perception, & Psychophysics 77, 2153-2165Google Scholar
  21. Dolk, T., Hommel, B., Prinz, W., & Liepelt, R. (2013). The (not so) social simon effect: A referential coding account. Journal of Experimental Psychology: Human Perception and Performance, 39, 1248-1260.PubMedGoogle Scholar
  22. Doneva, S., & Cole, G. G. (2014). The role of attention in a joint-action effect. PLOS One, 9, 3, e91336.Google Scholar
  23. Doneva, S., Atkinson, M. Skarratt, P. & Cole, G. G. (2017). Action or attention in social inhibition of return? Psychological Research, 81, 143-54.Google Scholar
  24. Dukewich, K. R. (2009). Reconceptualizing inhibition of return as habituation of the orienting response. Psychonomic Bulletin and Review, 16, 238-251.PubMedGoogle Scholar
  25. di Pellegrino, G., Fadiga, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176-180.PubMedGoogle Scholar
  26. Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030-1044.PubMedGoogle Scholar
  27. Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65, 999-1010.Google Scholar
  28. Frischen, A., Bayliss, A. P., & Tipper, S. P. (2007). Gaze-cueing of attention: Visual attention, social cognition and individual differences. Psychological Bulletin, 133(4), 694724.Google Scholar
  29. Fuller, S., Park, Y., & Carrasco, M. (2009). Cue contrast modulates the effects of exogenous attention on appearance. Vision Research, 49, 1825–1837.PubMedPubMedCentralGoogle Scholar
  30. Galantucci, B., & Sebanz, N. (2009). Joint action: Current perspectives. Topics in Cognitive Science, 1, 255–259.PubMedGoogle Scholar
  31. Gattis, M., Bekkering, H., & Wohlschläger, A. (2002). Goal-directed imitation. In A. N. Meltzoff & W. Prinz (Eds.), The imitative mind (pp. 183–205). Cambridge, England: Cambridge University Press.Google Scholar
  32. Gazzola, V. V., Rizzolatti, G. G., Wicker, B. B., & Keysers, C. C. (2007). The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. Neuroimage, 35, 1674–1684.PubMedGoogle Scholar
  33. Gellatly, A.R.H., & Cole, G. G. (2000). Accuracy of target detection in new object and old object displays. Journal of Experimental Psychology: Human Perception and Performance, 26, 889-899.PubMedGoogle Scholar
  34. Hayes, S. J., Hansen, S., & Elliot, D. (2010). Between-person effects on attention and action: Joe and Fred revisited. Psychological Research, 74, 302-312.PubMedGoogle Scholar
  35. Henderson, J. M., & Macquistan, A. D. (1993). The spatial distribution of attention following an exogenous cue. Perception & Psychophysics, 53, 221-230.Google Scholar
  36. Hollander, A., Jung, C., and Prinz, W. (2011). Covert motor activity on NoGo trials in a task sharing paradigm: evidence from the lateralized readiness potential. Experimental Brain Research, 211, 345–356.PubMedGoogle Scholar
  37. Hommel, B. (1996). No prevalence of right-left over above-below spatial codes. Perception & Psychophysics, 58, 102-110.Google Scholar
  38. Hommel, B. (2009). Action control according to TEC (theory of event coding). Psychological Research, 73, 512-526.PubMedPubMedCentralGoogle Scholar
  39. Jeannerod, M., & Frak, V. (1999). Mental imaging of motor activity in humans. Current Opinion in Neurobiology, 9, 735–739.PubMedGoogle Scholar
  40. Janczyk, M., Welsh, T. M., & Dolk, T. (2016). A role for goals for social inhibition of return? The Quarterly Journal of Experimental Psychology, 69, 2402-2418.PubMedGoogle Scholar
  41. Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception and Psychophysics, 43, 346-354.PubMedGoogle Scholar
  42. Kean, M. & Lambert, A. (2003). The Influence of a salience distinction between bilateral cues on the latency of target-detection saccades. British Journal of Psychology, 94, 373-388.PubMedGoogle Scholar
  43. Kilner, J., Paulignan, Y., & Blakemore, S. (2003). An interference effect of observed biological movement on action. Current Biology, 13 (6), 522–525.PubMedGoogle Scholar
  44. Klein, R. M., & MacInnes, W. J. (1999). Inhibition of return is a Foraging facilitator in visual search. Psychological Science, 10, 346–352.Google Scholar
  45. Lamme, V. A. (2003). Why visual attention and awareness are different. Trends in Cognitive Sciences, 7, 12-18.PubMedGoogle Scholar
  46. Lestou, V., Pollick, F., & Kourtzi, Z. (2008). Neural substrates for action understanding at different description levels in the human brain. Journal of Cognitive Neuroscience, 20, 324–341.PubMedGoogle Scholar
  47. Liepelt, R., von Cramon, D. Y., & Brass, M. (2008). What is matched in direct matching? Intention attribution modulates motor priming. Journal of Experimental Psychology: Human Perception and Performance, 34, 578-591.PubMedGoogle Scholar
  48. Lin, J. Y., Franconeri, S. L., & Enns, J. T. (2008). Objects on a collision path with the observer demand attention. Psychological Science, 19, 686-692.PubMedGoogle Scholar
  49. Longo, M. R., Kosobud, A., & Bertenthal, B. I. (2008). Automatic imitation of biomechanically possible and impossible actions: Effects of priming movements versus goals. Journal of Experimental Psychology: Human Perception and Performance, 34, 489–501.PubMedGoogle Scholar
  50. Lyons, J., Weeks, D. J., & Elliott, D. (2013). The gambler's fallacy: A basic inhibitory process? Frontiers in Psychology, 4, 72.PubMedPubMedCentralGoogle Scholar
  51. MacKay, D.G. (1987). Self-inhibition, perceptual feedback and error detection. In D. G. MacKay, (ed.) (1987). The organization of perception and action: A theory for language andother cognitive skills (1-254). Berlin: Springer-Verlag.Google Scholar
  52. Mansfield, E., Farroni, T., & Johnson, M. (2003). Does gaze perception facilitate overt orienting? Visual Cognition, 10, 7–14.Google Scholar
  53. Manzone, J., Cole, G. G., Skarratt, P.A., & Welsh, T.N. (2017). Response-specific effects in a joint action task: social inhibition of return effects do not emerge when observed and executed actions are different. Psychological Research, 81, 1059-1071.PubMedGoogle Scholar
  54. Meltzoff, A. N., & Moore, M. K. (1994). Imitation, memory, and the representation of persons. Infant Behavior & Development, 17, 83–99.Google Scholar
  55. Neyedli, H., & Welsh T.N. (2012). The processes of facilitation and inhibition in a cue-target paradigm: Insight from movement trajectory deviations. Acta Psychologica, 139, 159-165.PubMedGoogle Scholar
  56. Ondobaka, S., de Lange, F. P., Newman-Norlund, R. D., Wiemers, M., & Bekkering, H. (2012). Interplay between action and movement intentions during social interaction. Psychological Science, 23, 30-35.PubMedGoogle Scholar
  57. Ondobaka, S., Newman-Norlund, RD, de Lange F.P., Bekkering, H. (2013). Action recognition depends on observer’s level of action control and social personality traits. PLoS ONE, 8, 11, e81392.Google Scholar
  58. Pierce, A. M., Crouse, M. D., and Green, J. J. (2017). Evidence for an attentional component of inhibition of return in visual search. Psychophysiology, 54, 1676-1685.PubMedGoogle Scholar
  59. Posner, M. I. (1980) Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3-25.PubMedGoogle Scholar
  60. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X (pp. 531-556). Hillsdale, NJ: Erlbaum.Google Scholar
  61. Posner, M. I., Rafal, R. D., Choate, L. S., & Vaughan, J. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2, 211-228.Google Scholar
  62. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129-154.Google Scholar
  63. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedGoogle Scholar
  64. Rizzolatti, G., Fabbri-Destro, M., & Cattaneo, L. (2008). Mirror neurons and their clinical relevance, Nature Clinical Practice Neurology, 5, 24-34.Google Scholar
  65. Rizzolati, G., Riggio, L., & Sheliga, B.M. (1994). Space and selective attention. In Umilta, C., Moscovitch, M. (Eds.), Attention and performance XV. Cambridge, MA: MIT Press.Google Scholar
  66. Rogers, S. J., Young, G. S., Cook, I., Giolzetti, A., & Ozonoff, S. (2008). Deferred and immediate imitation in regressive and early onset autism. Journal of Child Psychology and Psychiatry, 9, 449–457.Google Scholar
  67. Sebanz, N. & Knoblich, G. (2009). Prediction in joint action: What, when, and where. Topics in Cognitive Science, 1, 353-367.PubMedGoogle Scholar
  68. Sebanz, N., Knoblich, G., & Prinz, W. (2003). Representing others’ actions: just like one’s own?. Cognition, 88, 11-21.Google Scholar
  69. Skarratt, P. A., Cole, G. G., Kingstone, A. (2010). Social inhibition of return. Acta Psychologica, 134, 48-54.PubMedGoogle Scholar
  70. Skarratt, P. A., Gellatly, A. R. H., Cole, G. G., Pilling, M. & Hulleman, J. (2014). Looming motion primes the visuomotor system. Journal of Experimental Psychology: Human Perception and Performance, 40, 566-579.PubMedGoogle Scholar
  71. Skarratt, P. A., Kuhn, G., & Cole, G. G. (2012). Visual cognition during real social interaction. Frontiers in Human Neuroscience, 6, 196.PubMedPubMedCentralGoogle Scholar
  72. Steinman, B. A., Steinman, S. B., & Lehmkuhle, S. (1997). Visual attention is dominated by the M-stream. Vision Research, 37, 17-23.Google Scholar
  73. Stephenson, D., & Siddle, D. (1983). Theories of habituation. In D. Siddle (Ed.), Orienting and habituation: Perspectives in human research (pp. 183-236). Chichester, U.K.: Wiley.Google Scholar
  74. Tassinari, G., Aglioti, S., Chelazzi, L., Marzi, C.A., & Berlucchi, G. (1987). Distribution in the visual field of the costs of voluntarily allocated attention and the inhibitory after effects of covert orienting. Neuropsychologia, 25, 55-72.PubMedGoogle Scholar
  75. Theeuwes, J., Atchley, P., & Kramer, A. F. (2000). On the time course of top-down and bottom-up control of visual attention. In S. Monsell & J. Driver (Eds.). Attention and performance XVII: Control of cognitive processes (pp. 105–125). Cambridge, MA: MIT Press.Google Scholar
  76. Tipper, S. P., Grison, S., & Kessler, K. (2003). Long-term inhibition of return of attention. Psychological Science, 14, 19-25.PubMedGoogle Scholar
  77. Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & Rizzolatti, G. (2001). I know what you are doing. A neurophysiological study. Neuron, 31, 155–165.PubMedGoogle Scholar
  78. Welsh, T.N., Manzone, J., & McDougall, L.M. (2014). Knowledge of response location alone is not sufficient to generate social inhibition of return. Acta Psychologica, 153, 153-159.PubMedGoogle Scholar
  79. Welsh, T. N., Elliot, D., Anson, J. G., Dhillon, V., Weeks, D. J., Lyons, J. L., & Chua, R. (2005). Does Joe influence Fred’s actions? Inhibition of return across different nervous systems. Neuroscience Letters, 385, 99-104.PubMedGoogle Scholar
  80. Welsh, T. N., Lyons, J., Weeks, D. J., Anson, J. G., Chua, R., Mendoza, J., & Elliot, D. (2007). Within-and between-person inhibition of return: Observation is as good as performance. Psychonomic Bulletin & Review, 14, 960-956.Google Scholar
  81. Welsh, T. N., McDougall, L. M., & Weeks D. J. (2009a). The performance and observation of action shape future behavior. Brain and Cognition 71, 64–71.PubMedGoogle Scholar
  82. Welsh, T. N., Ray, M. C., Weeks, D. J., Dewey, D., & Elliott, D. (2009b). Does Joe influence Fred's action? Not if Fred has autism spectrum disorder. Brain Research, 1248, 141-148.PubMedGoogle Scholar
  83. Welsh, T.N., & Weeks, D.J. (2010). Visual selective attention & action. In D. Elliott and M.A. Khan (Eds.), Vision and goal-directed movement: Neurobehavioral perspectives. (pp. 39-58). Human Kinetics, Champaign Illinois.Google Scholar
  84. Wohlschläger, A., & Bekkering, H. (2002). Is human imitation based on a mirror-neurone system? Some behavioral evidence. Experimental Brain Research, 143, 335–341.PubMedGoogle Scholar
  85. Yantis, S., & Gibson, B. S. (1994). Object continuity in apparent motion and attention. Canadian Journal of Psychology, 48, 182-204.Google Scholar
  86. Yantis, S., & Hillstrom, A.P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20, 95-107.PubMedGoogle Scholar
  87. Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 601-621.PubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Geoff G. Cole
    • 1
    Email author
  • Timothy N. Welsh
    • 2
  • Paul A. Skarratt
    • 3
  1. 1.Centre for Brain ScienceUniversity of EssexColchesterUK
  2. 2.Faculty of Kinesiology and Physical EducationUniversity of TorontoTorontoCanada
  3. 3.Department of PsychologyUniversity of HullHullUK

Personalised recommendations