Advertisement

Tactile motion biases visual motion perception in binocular rivalry

  • Marlene HenseEmail author
  • Stephanie Badde
  • Brigitte Röder
Article

Abstract

There is an ongoing debate whether or not multisensory interactions require awareness of the sensory signals. Static visual and tactile stimuli have been shown to influence each other even in the absence of visual awareness. However, it is unclear if this finding generalizes to dynamic contexts. In the present study, we presented visual and tactile motion stimuli and induced fluctuations of visual awareness by means of binocular rivalry: two gratings which drifted in opposite directions were displayed, one to each eye. One visual motion stimulus dominated and reached awareness while the other visual stimulus was suppressed from awareness. Tactile motion stimuli were presented at random time points during the visual stimulation. The motion direction of a tactile stimulus always matched the direction of one of the concurrently presented visual stimuli. The visual gratings were differently tinted, and participants reported the color of the currently seen stimulus. Tactile motion delayed perceptual switches that ended dominance periods of congruently moving visual stimuli compared to switches during visual-only stimulation. In addition, tactile motion fostered the return to dominance of suppressed, congruently moving visual stimuli, but only if the tactile motion started at a late stage of the ongoing visual suppression period. At later stages, perceptual suppression is typically decreasing. These results suggest that visual awareness facilitates but does not gate multisensory interactions between visual and tactile motion signals.

Keywords

Binocular rivalry Visual - tactile motion Multisensory integration / Crossmodal interactions Visual awareness 

Notes

Acknowledgements

Funding from the European Research Council (ERC-2009-AdG 249425-CriticalBrainChanges) and the German Research Foundation (DFG Ro 2625/10-1) to BR and (BA 5600/1-1) to SB. We thank Liesa Zwetzschke for help with data collection.

Supplementary material

13414_2019_1692_MOESM1_ESM.pdf (638 kb)
ESM 1 (PDF 638 kb)

References

  1. Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of moving visual patterns. Nature, 300(5892), 523. doi: https://doi.org/10.1038/300523a0 Google Scholar
  2. Alais, D. (2012). Binocular rivalry: Competition and inhibition in visual perception. Wiley Interdisciplinary Reviews: Cognitive Science, 3(1), 87–103. doi: https://doi.org/10.1002/wcs.151 Google Scholar
  3. Alais, D., Cass, J., O’Shea, R. P., & Blake, R. (2010). Visual sensitivity underlying changes in visual consciousness. Current Biology, 20(15), 1362–1367. doi: https://doi.org/10.1016/j.cub.2010.06.015 Google Scholar
  4. Avillac, M., Hamed, S. B., & Duhamel, J.-R. (2007). Multisensory Integration in the Ventral Intraparietal Area of the Macaque Monkey. Journal of Neuroscience, 27(8), 1922–1932. doi: https://doi.org/10.1523/JNEUROSCI.2646-06.2007 Google Scholar
  5. Bach, M. (2006). The Freiburg visual acuity test-variability unchanged by post-hoc re-analysis. Graefe’s Archive for Clinical and Experimental Ophthalmology, 245(7), 965–971. doi: https://doi.org/10.1007/s00417-006-0474-4 Google Scholar
  6. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. doi: https://doi.org/10.1016/j.jml.2012.11.001 Google Scholar
  7. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). doi: https://doi.org/10.18637/jss.v067.i01
  8. Bensmaïa, S. J., Killebrew, J. H., & Craig, J. C. (2006). Influence of visual motion on tactile motion perception. Journal of Neurophysiology, 96(3), 1625–1637. doi: https://doi.org/10.1152/jn.00192.2006 Google Scholar
  9. Blake, R., & Logothetis, N. K. (2002). Visual competition. Nature Reviews Neuroscience, 3(1), 13–21. doi: https://doi.org/10.1038/nrn701 Google Scholar
  10. Blake, R., Sobel, K. V., & James, T. W. (2004). Neural synergy between kinetic vision and touch. Psychological Science, 15(6), 397–402. doi: https://doi.org/10.1111/j.0956-7976.2004.00691.x Google Scholar
  11. Boly, M., Garrido, M. I., Gosseries, O., Bruno, M.-A., Boveroux, P., Schnakers, C., … Friston, K. (2011). Preserved feedforward but impaired top-down processes in the vegetative state. Science, 332(6031), 858–862. doi: https://doi.org/10.1126/science.1202043 Google Scholar
  12. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. doi: https://doi.org/10.1163/156856897X00357 Google Scholar
  13. Bremmer, F., Schlack, A., Shah, N. J., Zafiris, O., Kubischik, M., Hoffmann, K.-P., … Fink, G. R. (2001). Polymodal motion processing in posterior parietal and premotor cortex: A human fMRI study strongly implies equivalencies between humans and monkeys. Neuron, 29(1), 287–296. doi: https://doi.org/10.1016/S0896-6273(01)00198-2 Google Scholar
  14. Butz, M. V., Thomaschke, R., Linhardt, M. J., & Herbort, O. (2010). Remapping motion across modalities: Tactile rotations influence visual motion judgments. Experimental Brain Research, 207(1–2), 1–11. doi: https://doi.org/10.1007/s00221-010-2420-2 Google Scholar
  15. Carney, T., Shadlen, M., & Switkes, E. (1987). Parallel processing of motion and colour information. Nature, 328(6131), 647–649. doi: https://doi.org/10.1038/328647a0 Google Scholar
  16. Conrad, V., Bartels, A., Kleiner, M., & Noppeney, U. (2010). Audiovisual interactions in binocular rivalry. Journal of Vision, 10(10), 27. doi: https://doi.org/10.1167/10.10.27 Google Scholar
  17. Craig, J. C. (2006). Visual motion interferes with tactile motion perception. Perception, 35(3), 351–367. doi: https://doi.org/10.1068/p5334 Google Scholar
  18. Cul, A. D., Baillet, S., & Dehaene, S. (2007). Brain dynamics underlying the nonlinear threshold for access to consciousness. PLOS Biology, 5(10), e260. doi: https://doi.org/10.1371/journal.pbio.0050260 Google Scholar
  19. Desimone. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1373), 1245–1255.Google Scholar
  20. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222. doi: https://doi.org/10.1146/annurev.ne.18.030195.001205 Google Scholar
  21. Dieter, K. C., Melnick, M. D., & Tadin, D. (2015). When can attention influence binocular rivalry? Attention, Perception & Psychophysics, 77(6), 1908–1918. doi: https://doi.org/10.3758/s13414-015-0905-6 Google Scholar
  22. Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5(1), 16–25. doi: https://doi.org/10.1016/S1364-6613(00)01568-0 Google Scholar
  23. Faivre, N., Arzi, A., Lunghi, C., & Salomon, R. (2017). Consciousness is more than meets the eye: A call for a multisensory study of subjective experience. Neuroscience of Consciousness, 2017(1). doi: https://doi.org/10.1093/nc/nix003
  24. Gori, M., Mazzilli, G., Sandini, G., & Burr, D. (2011). Cross-sensory facilitation reveals neural interactions between visual and tactile motion in humans. Frontiers in Psychology, 2, 55. doi: https://doi.org/10.3389/fpsyg.2011.00055 Google Scholar
  25. Gori, M., Sciutti, A., Jacono, M., Sandini, G., Morrone, C., & Burr, D. C. (2013). Long integration time for accelerating and decelerating visual, tactile and visuo-tactile stimuli. Multisensory Research, 26(1–2), 53–68. doi: https://doi.org/10.1163/22134808-00002397 Google Scholar
  26. Hagen, M. C., Franzén, O., McGlone, F., Essick, G., Dancer, C., & Pardo, J. V. (2002). Tactile motion activates the human middle temporal/V5 (MT/V5) complex: Tactile motion in hMT/V5. European Journal of Neuroscience, 16(5), 957–964. doi: https://doi.org/10.1046/j.1460-9568.2002.02139.x Google Scholar
  27. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.Google Scholar
  28. Hong, S. W., & Blake, R. (2009). Interocular suppression differentially affects achromatic and chromatic mechanisms. Attention, Perception & Psychophysics, 71(2), 403–411. doi: https://doi.org/10.3758/APP.71.2.403 Google Scholar
  29. Jiang, F., Beauchamp, M. S., & Fine, I. (2015). Re-examining overlap between tactile and visual motion responses within hMT+ and STS. NeuroImage, 119, 187–196. doi: https://doi.org/10.1016/j.neuroimage.2015.06.056 Google Scholar
  30. Kang, M.-S., & Blake, R. (2005). Perceptual synergy between seeing and hearing revealed during binocular rivalry. Psichologija, 32, 7–15.Google Scholar
  31. Kaunitz, L., Fracasso, A., & Melcher, D. (2011). Unseen complex motion is modulated by attention and generates a visible aftereffect. Journal of Vision, 11(13), 10–10. doi: https://doi.org/10.1167/11.13.10 Google Scholar
  32. Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in psychtoolbox-3. Perception, 36(14), 1–16. doi: https://doi.org/10.1068/v070821 Google Scholar
  33. Konkle, T., Wang, Q., Hayward, V., & Moore, C. I. (2009). Motion aftereffects transfer between touch and vision. Current Biology, 19(9), 745–750. doi: https://doi.org/10.1016/j.cub.2009.03.035 Google Scholar
  34. Krebber, M., Harwood, J., Spitzer, B., Keil, J., & Senkowski, D. (2015). Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices. NeuroImage, 117, 160–169. doi: https://doi.org/10.1016/j.neuroimage.2015.05.056 Google Scholar
  35. Lee, M., Blake, R., Kim, S., & Kim, C.-Y. (2015). Melodic sound enhances visual awareness of congruent musical notes, but only if you can read music. Proceedings of the National Academy of Sciences, 112(27), 8493–8498. doi: https://doi.org/10.1073/pnas.1509529112 Google Scholar
  36. Lehmkuhle, S. W., & Fox, R. (1975). Effect of binocular rivalry suppression on the motion aftereffect. Vision Research, 15(7), 855–859. doi: https://doi.org/10.1016/0042-6989(75)90266-7 Google Scholar
  37. Levelt, W. J. M. (1965). On Binocular Rivlary. Retrieved from http://www.mpi.nl/world/materials/publications/levelt/Levelt_Binocular_Rivalry_1965.pdf
  38. Lunghi, C., & Alais, D. (2013). Touch interacts with vision during binocular rivalry with a tight orientation tuning. PloS One, 8(3), e58754. doi: https://doi.org/10.1371/journal.pone.0058754 Google Scholar
  39. Lunghi, C., & Alais, D. (2015). Congruent tactile stimulation reduces the strength of visual suppression during binocular rivalry. Scientific Reports, 5, 9413. doi: https://doi.org/10.1038/srep09413 Google Scholar
  40. Lunghi, C., Binda, P., & Morrone, M. C. (2010). Touch disambiguates rivalrous perception at early stages of visual analysis. Current Biology, 20(4), R143-144. doi: https://doi.org/10.1016/j.cub.2009.12.015 Google Scholar
  41. Lunghi, C., Morrone, M. C., & Alais, D. (2014). Auditory and tactile signals combine to influence vision during binocular rivalry. Journal of Neuroscience, 34(3), 784–792. doi: https://doi.org/10.1523/JNEUROSCI.2732-13.2014 Google Scholar
  42. Lyons, G., Sanabria, D., Vatakis, A., & Spence, C. (2006). The modulation of crossmodal integration by unimodal perceptual grouping: A visuotactile apparent motion study. Experimental Brain Research, 174(3), 510–516. doi: https://doi.org/10.1007/s00221-006-0485-8 Google Scholar
  43. Meyer, G. F., Wuerger, S. M., Röhrbein, F., & Zetzsche, C. (2005). Low-level integration of auditory and visual motion signals requires spatial co-localisation. Experimental Brain Research, 166(3–4), 538–547. doi: https://doi.org/10.1007/s00221-005-2394-7 Google Scholar
  44. Moors, P., Huygelier, H., Wagemans, J., de-Wit, L., & van Ee, R. (2015). Suppressed visual looming stimuli are not integrated with auditory looming signals: Evidence from continuous fash suppression. I-Perception, 6(1), 48–62. doi: https://doi.org/10.1068/i0678 Google Scholar
  45. Moutoussis, K., & Zeki, S. (2002). The relationship between cortical activation and perception investigated with invisible stimuli. Proceedings of the National Academy of Sciences, 99(14), 9527–9532. doi: https://doi.org/10.1073/pnas.142305699 Google Scholar
  46. Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of striate cortical neurons projecting to area mt in macaque monkeys. Journal of Neuroscience, 16(23), 7733–7741.Google Scholar
  47. Mudrik, L., Faivre, N., & Koch, C. (2014). Information integration without awareness. Trends in Cognitive Sciences, 18(9), 488–496. doi: https://doi.org/10.1016/j.tics.2014.04.009 Google Scholar
  48. Nguyen, V. A., Freeman, A. W., & Alais, D. (2003). Increasing depth of binocular rivalry suppression along two visual pathways. Vision Research, 43(19), 2003–2008. doi: https://doi.org/10.1016/S0042-6989(03)00314-6 Google Scholar
  49. Nguyen, V. A., Freeman, A. W., & Wenderoth, P. (2001). The depth and selectivity of suppression in binocular rivalry. Perception & Psychophysics, 63(2), 348–360. doi: https://doi.org/10.3758/BF03194475 Google Scholar
  50. Pei, Y.-C., Chang, T.-Y., Lee, T.-C., Saha, S., Lai, H.-Y., Gomez-Ramirez, M., … Wong, A. (2013). Cross-modal sensory integration of visual-tactile motion information: Instrument design and human psychophysics. Sensors, 13(6), 7212–7223. doi: https://doi.org/10.3390/s130607212 Google Scholar
  51. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. doi: https://doi.org/10.1163/156856897X00366 Google Scholar
  52. Soto-Faraco, S., Spence, C., & Kingstone, A. (2004). Cross-modal dynamic capture: Congruency effects in the perception of motion across sensory modalities. Journal of Experimental Psychology: Human Perception and Performance, 30(2), 330–345. doi: https://doi.org/10.1037/0096-1523.30.2.330 Google Scholar
  53. Summers, I. R., Francis, S. T., Bowtell, R. W., McGlone, F. P., & Clemence, M. (2009). A functional-magnetic-resonance-imaging investigation of cortical activation from moving vibrotactile stimuli on the fingertip. The Journal of the Acoustical Society of America, 125(2), 1033–1039. doi: https://doi.org/10.1121/1.3056399 Google Scholar
  54. Uhlhaas, P. J., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D., & Singer, W. (2009). Neural synchrony in cortical networks: History, concept and current status. Frontiers in Integrative Neuroscience, 3, 17. doi: https://doi.org/10.3389/neuro.07.017.2009 Google Scholar
  55. Ushioda, H., & Wada, Y. (2007). Multisensory integration between visual and tactile motion information: evidence from redundant-signals effects on reaction time. Proceedings of Fechner Day, 23(1). Retrieved from http://www.ispsychophysics.org/fd/index.php/proceedings/index
  56. Zeki, S., & Ffytche, D. H. (1998). The Riddoch syndrome: Insights into the neurobiology of conscious vision. Brain: A Journal of Neurology, 121(1), 25–45.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Marlene Hense
    • 1
    Email author
  • Stephanie Badde
    • 1
    • 2
  • Brigitte Röder
    • 1
  1. 1.Biological Psychology and NeuropsychologyUniversity of HamburgHamburgGermany
  2. 2.Department of PsychologyNew York UniversityNew YorkUSA

Personalised recommendations