Advertisement

On the relationship between value-driven and stimulus-driven attentional capture

  • Brian A. AndersonEmail author
  • Haena Kim
Short Report

Abstract

Reward history, physical salience, and task relevance all influence the degree to which a stimulus competes for attention, reflecting value-driven, stimulus-driven, and goal-contingent attentional capture, respectively. Theories of value-driven attention have likened reward cues to physically salient stimuli, positing that reward cues are preferentially processed in early visual areas as a result of value-modulated plasticity in the visual system. Such theories predict a strong coupling between value-driven and stimulus-driven attentional capture across individuals. In the present study, we directly test this hypothesis, and demonstrate a robust correlation between value-driven and stimulus-driven attentional capture. Our findings suggest substantive overlap in the mechanisms of competition underlying the attentional priority of reward cues and physically salient stimuli.

Keywords

Selective attention Reward learning Eye movements Visual salience 

Notes

Acknowledgements

Special thanks to Mark Britton and Ming-Ray Liao for assistance with data collection.

Author contributions

B.A.A. developed the study concept. B.A.A. and H.K. designed and programmed the experimental task. H.K. coded the data, which B.A.A. subsequently analyzed. B.A.A. and H.K. contributed to the writing of the manuscript.

Funding

The reported research was supported in part by a start-up package to BAA from Texas A&M University, and NARSAD Young Investigator Grant 26008 to BAA and NIH grant R01-DA046410 to BAA.

Compliance with ethical standards

Conflict of interest statement

The authors declare no conflict of interest.

Supplementary material

13414_2019_1670_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 14 kb)

References

  1. Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision, 13(3), 7, 1–16.CrossRefGoogle Scholar
  2. Anderson, B. A. (2016). The attention habit: How reward learning shapes attentional selection. Annals of the New York Academy of Sciences, 1369, 24–39.CrossRefGoogle Scholar
  3. Anderson, B. A. (2017). Reward processing in the value-driven attention network: Reward signals tracking cue identity and location. Social, Cognitive, and Affective Neuroscience, 12, 461-467.CrossRefGoogle Scholar
  4. Anderson, B. A. (in press). Neurobiology of value-driven attention. Current Opinion in Psychology.Google Scholar
  5. Anderson, B. A., & Halpern, M. (2017). On the value-dependence of value-driven attentional capture. Attention, Perception, and Psychophysics, 79, 1001-1011.CrossRefGoogle Scholar
  6. Anderson, B. A., & Kim, H. (in press). Test–retest reliability of value-driven attentional capture. Behavior Research Methods.Google Scholar
  7. Anderson, B. A., Kuwabara, H., Wong, D. F., Gean, E. G., Rahmim, A., Brasic, J. R., . . . Yantis, S. (2016). The role of dopamine in value-based attentional orienting. Current Biology, 26, 550–555.Google Scholar
  8. Anderson, B. A., Kuwabara, H., Wong, D. F., Roberts, J., Rahmim, A., Brasic, J. R., & Courtney, S. M. (2017). Linking dopaminergic reward signals to the development of attentional bias: A positron emission tomographic study. NeuroImage, 157, 27–33.CrossRefGoogle Scholar
  9. Anderson, B. A., Laurent, P. A., & Yantis, S. (2011a). Learned value magnifies salience-based attentional capture. PLOS ONE, 6(11), e27926.CrossRefGoogle Scholar
  10. Anderson, B. A., Laurent, P. A., & Yantis, S. (2011b). Value-driven attentional capture. Proceedings of the National Academy of Sciences, USA, 108, 10367–10371.CrossRefGoogle Scholar
  11. Anderson, B. A., Laurent, P. A., & Yantis, S. (2014). Value-driven attentional priority signals in human basal ganglia and visual cortex. Brain Research, 1587, 88–96.CrossRefGoogle Scholar
  12. Anderson, B. A., & Yantis, S. (2012). Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing. Attention, Perception, and Psychophysics, 74, 1644–1653.CrossRefGoogle Scholar
  13. Ataya, A. F., Adams, S., Mullings, E., Cooper, R. M., Attwood, A. S., & Munafò, M. R. (2012). Internal reliability of measures of substance-related cognitive bias. Drug and Alcohol Dependence, 121, 148–151.CrossRefGoogle Scholar
  14. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437–443.CrossRefGoogle Scholar
  15. Barbaro, L., Peelen, M. V., & Hickey, C. (2017). Valence, not utility, underlies reward-driven prioritization in human vision. Journal of Neuroscience, 37, 10438–10450.CrossRefGoogle Scholar
  16. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.CrossRefGoogle Scholar
  17. Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013). Rewards teach visual selective attention. Vision Research, 85, 58–72.CrossRefGoogle Scholar
  18. Donk, M., & van Zoest, W. (2008). Effects of salience are short-lived. Psychological Science, 19, 733–739.CrossRefGoogle Scholar
  19. Donohue, S. E., Hopf, J. M., Bartsch, M. V., Schoenfeld, M. A., Heinze, H. J., & Woldorff, M. G. (2016). The rapid capture of attention by rewarded objects. Journal of Cognitive Neuroscience, 28, 529–541.CrossRefGoogle Scholar
  20. Failing, M. F., & Theeuwes, J. (2014). Exogenous visual orienting by reward. Journal of Vision, 14(5/6), 1–9.Google Scholar
  21. Failing, M., & Theeuwes, J. (2018). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin and Review, 25, 514–538.CrossRefGoogle Scholar
  22. Field, M., Marhe, R., & Franken, I. H. A. (2014). The clinical relevance of attentional bias in substance use disorders. CNS Spectrums, 19, 225–230.CrossRefGoogle Scholar
  23. Gaspelin, N., & Luck, S. J. (2018). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22, 79–92.CrossRefGoogle Scholar
  24. Hickey, C., Chelazzi, L., & Theeuwes, J. (2010a). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30, 11096–11103.CrossRefGoogle Scholar
  25. Hickey, C., Chelazzi, L., & Theeuwes, J. (2010b). Reward guides vision when it's your thing: Trait reward-seeking in reward-mediated visual priming. PLOS ONE, 5, e14087. CrossRefGoogle Scholar
  26. Hickey, C., Keiser, D., & Peelen, M. V. (2015). Reward guides attention to object categories in real-world scenes. Journal of Experimental Psychology: General, 144, 264–273.CrossRefGoogle Scholar
  27. Hickey, C., & Peelen, M. V. (2015). Neural mechanisms of incentive salience in naturalistic human vision. Neuron, 85, 512–518.CrossRefGoogle Scholar
  28. Herzog, M. H., & Fahle, M. (1999). Effects of biased feedback on learning and deciding in a vernier discrimination task. Vision Research, 39, 4232–4243.CrossRefGoogle Scholar
  29. Hopf, J. M., Schoenfeld, M. A., Buschschulte, A., Rautzenberg, A., Krebs, R. M., & Boehler, C. N. (2015). The modulatory impact of reward and attention on global feature selection in human visual cortex. Visual Cognition, 23, 229–248.CrossRefGoogle Scholar
  30. Kawahara, J. I., & Kihara, K. (2011). No commonality between attentional capture and attentional blink. The Quarterly Journal of Experimental Psychology, 64, 991–1008.CrossRefGoogle Scholar
  31. Le Pelley, M. E., Pearson, D., Griffiths, O., & Beesley, T. (2015). When goals conflict with values: Counterproductive attentional and oculomotor capture by reward-related stimuli. Journal of Experimental Psychology: General, 144, 158–171.CrossRefGoogle Scholar
  32. MacLean, M. H., & Giesbrecht, B. (2015). Neural evidence reveals the rapid effects of reward history on selective attention. Brain Research, 1606, 86–94.CrossRefGoogle Scholar
  33. Nissens, T., Failing, M., & Theeuwes, J. (2017). People look at the object they fear: Oculomotor capture by stimuli that signal threat. Cognition & Emotion, 31(8), 1707–1714.CrossRefGoogle Scholar
  34. Roelfsema, P. R., & van Ooyen, A. (2005). Attention-gated reinforcement learning of internal representations for classification. Neural Computation, 17, 2176–2214.CrossRefGoogle Scholar
  35. Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on reinforcers and attention. Trends in Cognitive Sciences, 14, 64–71.CrossRefGoogle Scholar
  36. Roque, N. A., Wright, T. J., & Boot, W. R. (2016). Do different attention capture paradigms measure different types of capture? Attention, Perception, & Psychophysics, 78, 2014–2030.CrossRefGoogle Scholar
  37. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 16, 225–237.CrossRefGoogle Scholar
  38. Sasaki, Y., Nanez, J. E., & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews Neuroscience, 11, 53–60.CrossRefGoogle Scholar
  39. Seitz, A. R., Kim, D., & Watanabe, T. (2009). Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron, 61, 700–707.CrossRefGoogle Scholar
  40. Seitz, A., Lefebvre, C., Watanabe, T., & Jolicoeur, P. (2005). Requirement for high-level processing in subliminal learning. Current Biology, 15, R753–R755.CrossRefGoogle Scholar
  41. Seitz, A., & Watanabe, T. (2005). A unified model for perceptual learning. Trends in Cognitive Sciences, 9, 329–334.CrossRefGoogle Scholar
  42. Serences, J. T., & Saproo, S. (2010). Population response profiles in early visual cortex are biased in favor of more valuable stimuli. Journal of Neurophysiology, 104, 76–87.CrossRefGoogle Scholar
  43. Sha, L. Z., & Jiang, Y. V. (2016). Components of reward-driven attentional capture. Attention, Perception, & Psychophysics, 78, 403–414.CrossRefGoogle Scholar
  44. Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception and Psychophysics, 51, 599–606.CrossRefGoogle Scholar
  45. Theeuwes, J., & Belopolsky, A. V. (2012). Reward grabs the eye: Oculomotor capture by rewarding stimuli. Vision Research, 74, 80–85.CrossRefGoogle Scholar
  46. van Koningsbruggen, M. G., Ficarella, S. C., Battelli, L., & Hickey, C. (2016). Transcranial random noise stimulation of visual cortex potentiates value-driven attentional capture. Social, Cognitive, and Affective Neuroscience, 11, 1481–1488. CrossRefGoogle Scholar
  47. van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and top-down control in saccadic visual selection. Journal of Experimental Psychology: Human Perception and Performance, 30, 746–759.Google Scholar
  48. Yamamoto, S., Kim, H. F., & Hikosaka, O. (2013). Reward value-contingent changes in visual responses in the primate caudate tail associated with a visuomotor skill. Journal of Neuroscience, 33, 11227–11238.CrossRefGoogle Scholar
  49. Yamamoto, S., Monosov, I. E., Yasuda, M., & Hikosaka, O. (2012). What and where information in the caudate tail guides saccades to visual objects. Journal of Neuroscience, 32, 11005–11016.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of PsychologyTexas A&M UniversityCollege StationUSA

Personalised recommendations