Attention, Perception, & Psychophysics

, Volume 81, Issue 1, pp 188–204 | Cite as

Sustained conscious access to incidental memories in RSVP

  • Julian MatthewsEmail author
  • Jamin Wu
  • Vanessa Corneille
  • Jakob Hohwy
  • Jeroen van Boxtel
  • Naotsugu Tsuchiya


In visual search of natural scenes, differentiation of briefly fixated but task-irrelevant distractor items from incidental memory is often comparable to explicit memorization. However, many characteristics of incidental memory remain unclear, including the capacity for its conscious retrieval. Here, we examined incidental memory for faces in either upright or inverted orientation using Rapid Serial Visual Presentation (RSVP). Subjects were instructed to detect a target face in a sequence of 8–15 faces cropped from natural scene photographs (Experiment 1). If the target face was identified within a brief time window, the subject proceeded to an incidental memory task. Here, subjects used incidental memory to discriminate between a probe face (a distractor in the RSVP stream) and a novel, foil face. In Experiment 2 we reduced scene-related semantic coherency by intermixing faces from multiple scenes and contrasted incidental memory with explicit memory, a condition where subjects actively memorized each face from the sequence without searching for a target. In both experiments, we measured objective performance (Type 1 AUC) and metacognitive accuracy (Type 2 AUC), revealing sustained and consciously accessible incidental memory for upright and inverted faces. In novel analyses of face categories, we examined whether accuracy or metacognitive judgments are affected by shared semantic features (i.e., similarity in gender, race, age). Similarity enhanced the accuracy of incidental memory discriminations but did not influence metacognition. We conclude that incidental memory is sustained and consciously accessible, is not reliant on scene contexts, and is not enhanced by explicit memorization.


Metacognition Consciousness Face perception Short-term memory Signal detection theory Gender 

Supplementary material

13414_2018_1600_MOESM1_ESM.docx (162 kb)
Supplemental Fig. 1 (DOCX 161 KB)


  1. Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126.Google Scholar
  2. Awh, E., Vogel, E. K., & Oh, S.-H. (2006). Interactions between attention and working memory. Neuroscience , 139(1), 201–208.Google Scholar
  3. Baars, B. J., & Franklin, S. (2003). How conscious experience and working memory interact. Trends in Cognitive Sciences, 7(4), 166–172.Google Scholar
  4. Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews. Neuroscience, 4(10), 829–839.Google Scholar
  5. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3).
  6. Barton, J. J. S., Radcliffe, N., Cherkasova, M. V., Edelman, J., & Intriligator, J. M. (2006). Information processing during face recognition: The effects of familiarity, inversion, and morphing on scanning fixations. Perception, 35(8), 1089–1105.Google Scholar
  7. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1).
  8. Beck, M. R., Peterson, M. S., Boot, W. R., Vomela, M., & Kramer, A. F. (2006). Explicit memory for rejected distractors during visual search. Visual Cognition, 14(2), 150–174.Google Scholar
  9. Bird, J. E. (1976). Effects of intentional and incidental instructions on picture recognition. Perceptual and Motor Skills, 42(2), 555–561.Google Scholar
  10. Block, N. (2011). Perceptual consciousness overflows cognitive access. Trends in Cognitive Sciences, 15(12), 567–575.Google Scholar
  11. Bower, G. H., & Karlin, M. B. (1974). Depth of processing pictures of faces and recognition memory. Journal of Experimental Psychology, 103(4), 751–757.Google Scholar
  12. Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14325–14329.Google Scholar
  13. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.Google Scholar
  14. Castelhano, M., & Heaven, C. (2010). The relative contribution of scene context and target features to visual search in scenes. Attention, Perception & Psychophysics, 72(5), 1283–1297.Google Scholar
  15. Castelhano, M., & Henderson, J. (2005). Incidental visual memory for objects in scenes. Visual Cognition, 12(6), 1017–1040.Google Scholar
  16. Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71.Google Scholar
  17. Chun, M. M., & Jiang, Y. (2003). Implicit, long-term spatial contextual memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29(2), 224–234.Google Scholar
  18. Cohen, G. (1973). How are pictures registered in memory? The Quarterly Journal of Experimental Psychology, 25(4), 557–564.Google Scholar
  19. Fabre-Thorpe, M. (2011). The characteristics and limits of rapid visual categorization. Frontiers in Psychology, 2, 243.Google Scholar
  20. Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J., & Rees, G. (2010). Relating introspective accuracy to individual differences in brain structure. Science, 329(5998), 1541–1543.Google Scholar
  21. Freire, A., Lee, K., & Symons, L. A. (2000). The face-inversion effect as a deficit in the encoding of configural information: Direct evidence. Perception, 29(2), 159–170.Google Scholar
  22. Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135.Google Scholar
  23. Harris, I. M., Benito, C. T., & Dux, P. E. (2010). Priming from distractors in rapid serial visual presentation is modulated by image properties and attention. Journal of Experimental Psychology. Human Perception and Performance, 36(6), 1595–1608.Google Scholar
  24. Henderson, J. (2005). Introduction to real-world scene perception. Visual Cognition, 12(6), 849–851.Google Scholar
  25. Hills, P. J., Cooper, R. E., & Pake, J. M. (2013). First fixations in face processing: The more diagnostic they are the smaller the face-inversion effect. Acta Psychologica, 142(2), 211–219.Google Scholar
  26. Hills, P. J., Sullivan, A. J., & Pake, J. M. (2012). Aberrant first fixations when looking at inverted faces in various poses: The result of the centre-of-gravity effect? British Journal of Psychology , 103(4), 520–538.Google Scholar
  27. Hollingworth, A., & Henderson, J. M. (2002). Accurate visual memory for previously attended objects in natural scenes. Journal of Experimental Psychology. Human Perception and Performance, 28(1), 113–136.Google Scholar
  28. Kaunitz, L. N., Rowe, E. G., & Tsuchiya, N. (2016). Large capacity of conscious access for incidental memories in natural scenes. Psychological Science, 27(9), 1266–1277.Google Scholar
  29. Koehler, K., & Eckstein, M. P. (2015). Scene inversion slows the rejection of false positives through saccade exploration during search. In D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (pp. 1141–1146). Austin, TX: Cognitive Science Society.Google Scholar
  30. Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Scene memory is more detailed than you think: The role of categories in visual long-term memory. Psychological Science, 21(11), 1551–1556.Google Scholar
  31. Lamme, V. (2016). The crack of dawn: Perceptual functions and neural mechanisms that mark the transition from unconscious processing to conscious vision. In T. Metzinger & J. W. Windt (Eds.), Open MIND. Frankfurt am Main: MIND Group.Google Scholar
  32. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.Google Scholar
  33. Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user’s guide. New York: Psychology Press.Google Scholar
  34. Maki, W. S., Frigen, K., & Paulson, K. (1997). Associative priming by targets and distractors during rapid serial visual presentation: Does word meaning survive the attentional blink? Journal of Experimental Psychology. Human Perception and Performance, 23(4), 1014–1034.Google Scholar
  35. Matthews, J., Schröder, P., Kaunitz, L., van Boxtel, J. J. A., & Tsuchiya, N. (2018). Conscious access in the near absence of attention: Critical extensions on the dual-task paradigm. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1755).
  36. Maxcey, A. M., & Woodman, G. F. (2014). Forgetting induced by recognition of visual images. Visual Cognition, 22(6), 789–808.Google Scholar
  37. Mohan, K., & Arun, S. P. (2012). Similarity relations in visual search predict rapid visual categorization. Journal of Vision, 12(11), 19.Google Scholar
  38. Nelson, T. O. (1996). Consciousness and metacognition. The American Psychologist, 51(2), 102.Google Scholar
  39. Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research, 155, 23–36.Google Scholar
  40. Pomplun, M. (2006). Saccadic selectivity in complex visual search displays. Vision Research, 46(12), 1886–1900.Google Scholar
  41. Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory, 2(5), 509–522.Google Scholar
  42. Rugo, K. F., Tamler, K. N., Woodman, G. F., & Maxcey, A. M. (2017). Recognition-induced forgetting of faces in visual long-term memory. Attention, Perception & Psychophysics, 79(7), 1878–1885.Google Scholar
  43. Schweinberger, S. R., Pfütze, E.-M., & Sommer, W. (1995). Repetition priming and associative priming of face recognition: Evidence from event-related potentials. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21(3), 722–736.Google Scholar
  44. Shen, J., Reingold, E. M., Pomplun, M., & Williams, D. E. (2003). Saccadic selectivity during visual search. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind’s eye: Cognitive and applied aspects of eye movement research (pp. 65–88). Amsterdam: Elsevier Science Publishers.Google Scholar
  45. Silverman, A., & Cason, H. (1934). Incidental memory for pleasant, unpleasant, and indifferent words. The American Journal of Psychology, 46(2), 315–320.Google Scholar
  46. Simons, D. J., & Levin, D. T. (1997). Change blindness. Trends in Cognitive Sciences, 1(7), 261–267.Google Scholar
  47. Song, C., Kanai, R., Fleming, S. M., Weil, R. S., Schwarzkopf, D. S., & Rees, G. (2011). Relating inter-individual differences in metacognitive performance on different perceptual tasks. Consciousness and Cognition, 20(4), 1787–1792.Google Scholar
  48. Spence, R., & Witkowski, M. (2013). Rapid serial visual presentation: Design for cognition. Springer.Google Scholar
  49. Standing, L. (1973). Learning 10000 pictures. The Quarterly Journal of Experimental Psychology, 25(2), 207–222.Google Scholar
  50. Standing, L., Conezio, J., & Haber, R. N. (1970). Perception and memory for pictures: Single-trial learning of 2500 visual stimuli. Psychonomic Science, 19(2), 73–74.Google Scholar
  51. Theeuwes, J., Belopolsky, A., & Olivers, C. N. L. (2009). Interactions between working memory, attention and eye movements. Acta Psychologica, 132(2), 106–114.Google Scholar
  52. Vandenbroucke, A. R. E., Sligte, I. G., Barrett, A. B., Seth, A. K., Fahrenfort, J. J., & Lamme, V. A. F. (2014). Accurate metacognition for visual sensory memory representations. Psychological Science, 25(4), 861–873.Google Scholar
  53. Varakin, D. A., Frye, K. M., & Mayfield, B. (2012). Intentional memory instructions do not improve visual memory. International Journal of Brain and Cognitive Sciences, 1(3), 18–25.Google Scholar
  54. Varakin, D. A., & Hale, J. (2014). Intentional memory instructions direct attention but do not enhance visual memory. SAGE Open, 4(4), 2158244014553588.Google Scholar
  55. Vladeanu, M., Lewis, M., & Ellis, H. (2006). Associative priming in faces: Semantic relatedness or simple co-occurrence? Memory & Cognition, 34(5), 1091–1101.Google Scholar
  56. Williams, C. C. (2010). Incidental and intentional visual memory: What memories are and are not affected by encoding tasks? Visual Cognition, 18(9), 1348–1367.Google Scholar
  57. Williams, C. C., Henderson, J. M., & Zacks, R. T. (2005). Incidental visual memory for targets and distractors in visual search. Perception & Psychophysics, 67(5), 816–827.Google Scholar
  58. Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin & Review, 11(2), 269–274.Google Scholar
  59. Wu, C.-C., Wick, F. A., & Pomplun, M. (2014). Guidance of visual attention by semantic information in real-world scenes. Frontiers in Psychology, 5, 54.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.School of Psychological SciencesMonash UniversityClaytonAustralia
  2. 2.Cognition and Philosophy LabMonash UniversityClaytonAustralia
  3. 3.Monash Institute of Cognitive and Clinical NeurosciencesMonash UniversityMelbourneAustralia

Personalised recommendations