Attention, Perception, & Psychophysics

, Volume 81, Issue 1, pp 85–97 | Cite as

Feature-based attention across saccades: Pop-out in color search is spatiotopic

  • Cécile EymondEmail author
  • Patrick Cavanagh
  • Thérèse Collins


Our perception of the world remains stable despite the retinal shifts that occur with each saccade. The role of spatial attention in matching pre- to postsaccadic visual information has been well established, but the role of feature-based attention remains unclear. In this study, we examined the transsaccadic processing of a color pop-out target. Participants made a saccade towards a neutral target and performed a search task on a peripheral array presented once the saccade landed. A similar array was presented just before the saccade and we analyzed what aspect of this preview benefitted the postsaccadic search task. We assessed the preview effect in the spatiotopic and retinotopic reference frames, and the potential transfer of feature selectivity across the saccade. In the first experiment, the target and distractor colors remained identical for the preview and the postsaccadic array and performance improved. The largest benefit was observed at the spatiotopic location. In the second experiment, the target and distractor colors were swapped across the saccade. All responses were slowed but the cost was least at the spatiotopic location. Our results show that the preview attracted spatial attention to the target location, which was then remapped, and suggest that previewed features, specifically colors, were transferred across the saccade. Furthermore, the preview induced a spatiotopic advantage regardless of whether the target switched color or not, suggesting that spatiotopy was established independently of feature processing. Our results support independent priming effects of features versus location and underline the role of feature-based selection in visual stability.


Attention Eye movements Feature-based attention Pop-out Spatiotopic 



The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC grant agreement n° AG324070 to P. C. and from the Dartmouth College Department of Psychological and Brain Sciences to P.C. The authors have no conflicts of interest to report.


  1. Ásgeirsson, Á. G., Kristjánsson, Á., & Bundesen, C. (2014). Independent priming of location and color in identification of briefly presented letters. Attention, Perception, & Psychophysics, 76(1), 40-48. CrossRefGoogle Scholar
  2. Becker, S. I., Valuch, C., & Ansorge, U. (2014). Color priming in pop-out search depends on the relative color of the target. Frontiers in Psychology, 5.
  3. Brainard, D. (1997). The Psychophysics Toolbox. Spatial Vision, 433-436.
  4. Bravo, M. J., & Nakayama, K. (1992). The role of attention in different visual-search tasks. Perception & Psychophysics, 51(5), 465-472. CrossRefGoogle Scholar
  5. Campana, G., & Casco, C. (2009). Repetition effects of features and spatial position: Evidence for dissociable mechanisms. Spatial Vision, 22(4), 325-338. CrossRefPubMedGoogle Scholar
  6. Carrasco, M., & Katz, S. M. (1992). The effect of target position in a feature visual search task. Paper presented at the 63rd Annual Meeting of the Eastern Psychology Association, Boston, MA. Google Scholar
  7. Castet, E., Jeanjean, S., Montagnini, A., Laugier, D., & Masson, G. S. (2006). Dynamics of attentional deployment during saccadic programming. Journal of Vision, 6, 196-212.CrossRefPubMedGoogle Scholar
  8. Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M. (2010). Visual stability based on remapping of attention pointers. Trends in Cognitive Sciences, 14(4), 147-153. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The Eyelink Toolbox: Eye tracking with MATLAB and the Psychophysics Toolbox. Behavior Research Methods, Instruments, & Computers, 34(4), 613-617. CrossRefGoogle Scholar
  10. Eimer, M., Kiss, M., & Cheung, T. (2010). Priming of pop-out modulates attentional target selection in visual search: Behavioural and electrophysiological evidence. Vision Research, 50(14), 1353-1361. CrossRefPubMedGoogle Scholar
  11. Eymond, C., Cavanagh, P., & Collins, T. (2016). Feature-based attention across saccades and immediate post-saccadic selection. Attention, Perception & Psychophysics, 78(5), 1293-1301. CrossRefGoogle Scholar
  12. Gokce, A., Müller, H. J., & Geyer, T. (2015). Positional priming of visual pop-out search is supported by multiple spatial reference frames. Frontiers in Psychology, 6.
  13. Golomb, J. D., Pulido, V. Z., Albrecht, A. R., Chun, M. M., & Mazer, J. A. (2010). Robustness of the retinotopic attentional trace after eye movements. Journal of Vision, 10(3), 19.1-12. CrossRefGoogle Scholar
  14. Goolsby, B. A., & Suzuki, S. (2001). Understanding priming of color-singleton search: Roles of attention at encoding and « retrieval ». Perception & Psychophysics, 63(6), 929-944. CrossRefGoogle Scholar
  15. Jonikaitis, D., Szinte, M., Rolfs, M., & Cavanagh, P. (2013). Allocation of attention across saccades. Journal of Neurophysiology, 109(5), 1425-1434. CrossRefPubMedGoogle Scholar
  16. Jonikaitis, D., & Theeuwes, J. (2013). Dissociating oculomotor contributions to spatial and feature-based selection. Journal of Neurophysiology,
  17. Kalogeropoulou, Z., & Rolfs, M. (2017). Saccadic eye movements do not disrupt the deployment of feature-based attention. Journal of Vision, 17(8), 4. CrossRefPubMedGoogle Scholar
  18. Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in psychtoolbox-3. Perception, 36(14). Consulté à l’adresse
  19. Kristjánsson, Á., Saevarsson, S., & Driver, J. (2013). The boundary conditions of priming of visual search: From passive viewing through task-relevant working memory load. Psychonomic Bulletin & Review, 20(3), 514-521. CrossRefGoogle Scholar
  20. Lisi, M., Cavanagh, P., & Zorzi, M. (2015). Spatial constancy of attention across eye movements is mediated by the presence of visual objects. Attention, Perception, & Psychophysics, 77(4), 1159-1169. CrossRefGoogle Scholar
  21. Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657-672. CrossRefGoogle Scholar
  22. Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58(7), 977-991. CrossRefGoogle Scholar
  23. Mathôt, S., & Theeuwes, J. (2010). Gradual Remapping Results in Early Retinotopic and Late Spatiotopic Inhibition of Return. Psychological Science, 21(12), 1793-1798. CrossRefPubMedGoogle Scholar
  24. Meinecke, C., & Donk, M. (2002). Detection Performance in Pop-Out Tasks: Nonmonotonic Changes with Display Size and Eccentricity. Perception, 31(5), 591-602. CrossRefPubMedGoogle Scholar
  25. Montagnini, A., & Castet, E. (2007). Spatiotemporal dynamics of visual attention during saccade preparation: Independence and coupling between attention and movement planning. Journal of Vision, 7(14), 8.1-16. CrossRefGoogle Scholar
  26. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437-442.CrossRefPubMedGoogle Scholar
  27. Poth, C. H., & Schneider, W. X. (2016). Breaking object correspondence across saccades impairs object recognition: The role of color and luminance. Journal of Vision, 16(11), 1-12. CrossRefPubMedGoogle Scholar
  28. Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P. (2011). Predictive remapping of attention across eye movements. Nature Neuroscience, 14(2), 252-256. CrossRefPubMedGoogle Scholar
  29. Theeuwes, J. (2010). Top–down and bottom–up control of visual selection. Acta Psychologica, 135(2), 77-99. CrossRefPubMedGoogle Scholar
  30. Theeuwes, J., Mathôt, S., & Grainger, J. (2013). Exogenous object-centered attention. Attention, Perception, & Psychophysics, 75(5), 812-818. CrossRefGoogle Scholar
  31. Tower-Richardi, S. M., Leber, A. B., & Golomb, J. D. (2016). Spatial priming in ecologically relevant reference frames. Attention, Perception, & Psychophysics, 78(1), 114-132. CrossRefGoogle Scholar
  32. Treisman, A., Vieira, A., & Hayes, A. (1992). Automaticity and preattentive processing. The American Journal of Psychology, 105(2), 341-362.CrossRefPubMedGoogle Scholar
  33. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136. CrossRefPubMedGoogle Scholar
  34. White, A. L., Rolfs, M., & Carrasco, M. (2013). Adaptive deployment of spatial and feature-based attention before saccades. Vision Research, 85, 26-35. CrossRefPubMedGoogle Scholar
  35. Wurtz, R. H. (2008). Neuronal mechanisms of visual stability. Vision Research, 48(20), 2070-2089. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yashar, A., White, A. L., Fang, W., & Carrasco, M. (2017). Feature singletons attract spatial attention independently of feature priming. Journal of Vision, 17(9), 7-7. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Cécile Eymond
    • 1
    • 2
    Email author
  • Patrick Cavanagh
    • 1
    • 3
    • 4
  • Thérèse Collins
    • 1
  1. 1.Laboratoire Psychologie de la Perception (LPP), CNRS UMR 8242, Université Paris DescartesParisFrance
  2. 2.Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
  3. 3.Department of Psychological and Brain SciencesDartmouth CollegeHanoverUSA
  4. 4.Department of PsychologyGlendon College, CVR, York UniversityTorontoCanada

Personalised recommendations