Attention, Perception, & Psychophysics

, Volume 81, Issue 1, pp 137–157 | Cite as

Semisupervised category learning facilitates the development of automaticity

  • Katleen VandistEmail author
  • Gert Storms
  • Eva Van den Bussche


In the human category of learning, learning is studied in a supervised, an unsupervised, or a semisupervised way. The rare human semisupervised category of learning studies all focus on early learning. However, the impact of the semisupervised category learning late in learning, when automaticity develops, is unknown. Therefore, in Experiment 1, all participants were first trained on the information-integration category structure for 2 days until they reached an expert level. Afterwards, half of the participants learned in a supervised way and the other half in a semisupervised way over two successive days. Both groups received an equal number of feedback trials. Finally, all participants took part in a test day where they were asked to respond as quickly as possible. Participants were significantly faster on this test in the semisupervised group than in the supervised group. This difference was not found on day 2, implying that the no-feedback trials in the semisupervised condition facilitated automaticity. Experiment 2 was designed to test whether the higher number of trials in the semisupervised condition of Experiment 1 caused the faster response times. We therefore created an almost supervised condition where participants almost always received feedback (95%) and an almost unsupervised condition where participants almost never received feedback (5%). All conditions now contained an equal number of trials to the semisupervised condition of Experiment 1. The results show that receiving feedback almost always or almost never led to slower response times than the semisupervised condition of Experiment 1. This confirms the advantage of semisupervised learning late in learning.


Categorization Semisupervised learning Automaticity 

Supplementary material

13414_2018_1595_MOESM1_ESM.pdf (1.7 mb)
ESM 1 (PDF 1778 kb)


  1. Ashby, F. G. (1992). Multidimensional models of categorization. In F. G. Ashby (Ed.), Multidimensional models of perception and cognition (pp. 449–483). Hillsdale: Erlbaum.Google Scholar
  2. Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442–481.CrossRefPubMedGoogle Scholar
  3. Ashby, F. G., & Ell, S. W. (2001). The neurobiology of human category learning. Trends in Cognitive Sciences, 5,204-210.CrossRefPubMedGoogle Scholar
  4. Ashby, F. G., Ell, S. W., & Waldron, E. M. (2003). Procedural learning in perceptual categorization. Memory & Cognition, 31(7), 1114–1125.CrossRefGoogle Scholar
  5. Ashby, F. G., Ennis, J. M., & Spiering, B. J. (2007). A neurobiological theory of automaticity in perceptual categorization. Psychological Review, 114, 632–656.CrossRefPubMedGoogle Scholar
  6. Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and categorization of multidimensional stimuli. Journal of Experimental Psychology. Learning, Memory, and Cognition, 14, 33–53.CrossRefPubMedGoogle Scholar
  7. Ashby, F. G., & Maddox, W. (1993). Relations between prototype, exemplar, and decision bound models of categorization. Journal of Mathematical Psychology, 37 (3), 372-400.CrossRefGoogle Scholar
  8. Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual Review of Psychology, 56, 149–178.CrossRefPubMedGoogle Scholar
  9. Ashby, F. G., & Maddox, W. T. (2010). Human category learning 2.0. Annals of the New York Academy of Sciences, 1224, 147-161.Google Scholar
  10. Ashby, F. G., Maddox, W. T., & Bohil, C. J. (2002). Observational versus feedback training in rule-based and information-integration category learning. Memory & Cognition, 30, 666–677.CrossRefGoogle Scholar
  11. Ashby, F. G., & O’Brien, J. B. (2007). The effects of positive versus negative feedback on information-integration category learning. Perception & Psychophysics, 69, 865–878.CrossRefGoogle Scholar
  12. Ashby, F. G., Queller, S., & Berretty, P. M. (1999). On the dominance of unidimensional rules in unsupervised categorization. Perception & Psychophysics, 61, 1178–1199.CrossRefGoogle Scholar
  13. Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14(5), 191-232.CrossRefGoogle Scholar
  14. Ashby, F. G., & Crossley, M. (2012). Automaticity and multiple memory systems. Wiley Interdisciplinary Reviews: Cognitive Science, 3, 353–376.Google Scholar
  15. Censor, N., Karni, A., & Sagi, D. (2006). A link between perceptual learning, adaptation and sleep, Vision Research, 46, 4071–4074.CrossRefPubMedGoogle Scholar
  16. Chapelle, O., Schölkopf, B., Zien, A (2006). Semi-supervised learning. MIT Press, Cambridge, MA, USA.CrossRefGoogle Scholar
  17. Clapper, J. P., & Bower, G. H. (1994). Category invention in unsupervised learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 20, 443–460.CrossRefPubMedGoogle Scholar
  18. Ell, S. W., & Ashby, F. G. (2006). The effects of category overlap on information-integration and rule-based category learning. Perception & Psychophysics, 68, 1013–1026.CrossRefGoogle Scholar
  19. French, R. M., Mareschal, D., Mermillod, M., & Quinn, P. C. (2004). The role of bottom-up processing in perceptual categorization by 3- to 4-month-old infants: simulations and data. Journal of experimental psychology: General, 133 (3), 382-397.CrossRefGoogle Scholar
  20. Gibson, B. R., Rogers, T. T., & Zhu, X. (2013). Human semi-supervised learning. Topics in Cognitive Science, 5, 132–172.CrossRefPubMedGoogle Scholar
  21. Gibson, B.R., Rogers, T.T., Kalish, C.W., & Zhu, X (2015). What causes categoryshifting in human semi-supervised learning? In Proceedings of the 37th Annual Conference of the Cognitive Science Society (CogSci)Google Scholar
  22. Heitz, R. P. (2014). The speed-accuracy trade-off: history, physiology, methodology and behavior. Frontiers in Neuroscience, 8 (150), 1-15.Google Scholar
  23. Hélie, S., Waldschmidt, J. G., & Ashby, F. G. (2010). Automaticity in rule-based and information-integration categorization. Attention, Perception & Psychophysics, 72, 1013–1031.CrossRefGoogle Scholar
  24. Kalish, C. W., Rogers, T. T., Lang, J., & Zhu, X. (2011). Can semi-supervised learning explain incorrect beliefs about categories? Cognition, 120, 106–118.CrossRefPubMedGoogle Scholar
  25. Kalish, C.W., Zhu, X., & Rogers, T.T. (2015). Drift in children's categories: when experienced distributions conflict with prior learning. Developmental Science. 18(6), 940-956.CrossRefPubMedGoogle Scholar
  26. Lake, B. M., & McClelland, J. L. (2011). Estimating the strength of unlabeled information during semi-supervised learning. Proceedings of the 33rd Annual Conference of the Cognitive Science Society, 1400–1405.Google Scholar
  27. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492-527.CrossRefGoogle Scholar
  28. Love, B. C. (2002). Comparing supervised and unsupervised category learning. Psychonomic Bulletin & Review, 9, 829–835.CrossRefGoogle Scholar
  29. Maddox, W. T., & Ashby, F. G. (1993). Comparing decision bound and exemplar models of categorization. Perception & Psychophysics, 53, 49–70.CrossRefGoogle Scholar
  30. Maddox, W. T., Ashby, F. G., & Gottlob, L. R. (1998). Response time distributions in multidimensional perceptual categorization. Perception & Psychophysics, 60(4), 620–637.CrossRefGoogle Scholar
  31. Maddox, W. T., Ashby, F. G., Ing, A. D., & Pickering, A. D. (2004a). Disrupting feedback processing interferes with rule-based but not information-integration category learning. Memory & cognition, 32 (4), 582-591.CrossRefGoogle Scholar
  32. Maddox, W. T., Bohil, C. J., & Ing, A. D. (2004b). Evidence for a procedural-learning-based system in perceptual category learning. Psychonomic Bulletin & Review, 11, 945–952.CrossRefGoogle Scholar
  33. Maddox, W. T., & Filoteo, J. V. (2011). Stimulus range and discontinuity effects on information-integration category learning and generalization. Attention, Perception & Psychophysics, 73, 1279–1295.CrossRefGoogle Scholar
  34. Maddox, W. T., Filoteo, J. V., Hejl, K. D., & Ing, A. D. (2004c). Category number impacts rule-based but not information-integration category learning: further evidence for dissociable category-learning systems. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30, 227–245.CrossRefPubMedGoogle Scholar
  35. Maddox, W. T., Glass, B. D., O’Brien, J. B., Filoteo, J. V., & Ashby, F. G. (2010a). Category label and response location shifts in category learning. Psychological Research, 74, 219–236.CrossRefPubMedGoogle Scholar
  36. Maddox, W. T., & Ing, A. D. (2005). Delayed feedback disrupts the procedural-learning system but not the hypothesis-testing system in perceptual category learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31, 100–107.CrossRefPubMedGoogle Scholar
  37. Maddox, W. T., Pacheco, J., Reeves, M., Zhu, B., & Schnyer, D. M. (2010b). Rule-based and information-integration category learning in normal aging. Neuropsychologia, 48, 2998–3008.CrossRefPubMedPubMedCentralGoogle Scholar
  38. McDonnell, J.V., Jew, C.J., and Gureckis, T.M. (2012). Sparse category labels obstruct generalization of category membership In N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the 34th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.Google Scholar
  39. McKinley, S. C., & Nosofsky, R. M. (1995). Investigations of exemplar and decision bound models in large, ill-defined category structures. Journal of Experimental Psychology. Human Perception and Performance, 21, 128–148.CrossRefPubMedGoogle Scholar
  40. Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85 (3), 207-238.CrossRefGoogle Scholar
  41. Medin, D. L., & Schwanenflugel, P. J. (1981). Linear separability in classification learning. Journal of Experimental Psychology: Human Learning & Memory, 7, 355-368.Google Scholar
  42. Medin, D. L., Wattenmaker, W. D., & Hampson, S. E. (1987). Family resemblance, conceptual cohesiveness, and category construction, Cognitive Psychology, 19, 242–279.CrossRefPubMedGoogle Scholar
  43. Milton, F., Longmore, C. A., & Wills, A. J. (2008). Processes of overall similarity sorting in free classification. Journal of Experimental Psychology. Human Perception and Performance, 34, 676–692.CrossRefPubMedGoogle Scholar
  44. Moors, A., & De Houwer, J. (2006). Automaticity: a theoretical and conceptual analysis. Psychological Bulletin, 132, 297–326.CrossRefPubMedGoogle Scholar
  45. Nosofsky, R. M. (1987). Attention and learning processes in the identification and categorization of integral stimuli. Journal of Experimental Psychology. Learning, Memory, and Cognition, 13, 87–108.CrossRefPubMedGoogle Scholar
  46. Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded classification. Psychological Review, 104, 266-300.CrossRefPubMedGoogle Scholar
  47. Paul, E. J., Boomer, J., Smith, J. D., & Ashby, F. G. (2011). Information-integration category learning and the human uncertainty response. Memory & Cognition, 39, 536–554.CrossRefGoogle Scholar
  48. Pothos, E. M., & Chater, N. (2002). A simplicity principle in unsupervised human categorization. Cognitive Science, 26 (3), 303-343.CrossRefGoogle Scholar
  49. Pothos, E. M., & Chater, N. (2005). Unsupervised categorization and category learning. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 58, 733–752.CrossRefPubMedGoogle Scholar
  50. Pothos, E. M., Perlman, A., Bailey, T. M., Kurtz, K., Edwards, D. J., Hines, P., & McDonnell, J. V. (2011). Measuring category intuitiveness in unconstrained categorization tasks. Cognition, 121, 83–100.CrossRefPubMedGoogle Scholar
  51. Rickard, T. C. (1997). Bending the power law: A CMPL theory of strategy shifts and the automatization of cognitive skilss. Journal of Experimental Psychology: General, 126, 288-311.CrossRefGoogle Scholar
  52. Rogers, T. T., Kalish, C., Gibson, B. R., Harrison, J., & Zhu, X. (2010). Semi-supervised learning is observed in a speeded but not an unspeeded 2D categorization task. In Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 2320–2325).Google Scholar
  53. Schneider, W., & Chein, J. M. (2003). Controlled & automatic processing: Behavior, theory, and biological mechanisms, Cognitive Science, 27 (3), 525-559.CrossRefGoogle Scholar
  54. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.CrossRefGoogle Scholar
  55. Shepard, R., Hovland, C., & Jenkins, H. (1961). Learning and memorization of classifications. Psychological Monographs, 75, 1–42.CrossRefGoogle Scholar
  56. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84 (2), 127-190.CrossRefGoogle Scholar
  57. Spiering, B. J., & Ashby, F. G. (2008a). Response processes in information-integration category learning. Neurobiology of Learning and Memory, 90, 330–338.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Spiering, B. J., & Ashby, F. G. (2008b). Initial training with difficult items facilitates information-integration, but not rule-based category learning: Research article. Psychological Science, 19, 1169–1177.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Stevens, M., Lammertyn, J., Verbruggen, F., & Vandierendonck, A. (2006). Tscope: A C library for programming cognitive experiments on the MS windows platform. Behavior Research Methods, 38, 280–286.CrossRefPubMedGoogle Scholar
  60. Stickgold, R., & Walker, M. P. (2005). Memory consolidation and reconsolidation: What is the role of sleep? Trends in Neuroscience, 28, 408–415CrossRefGoogle Scholar
  61. Stickgold, R., James, L., & Hobson, J. A. (2000a). Visual discrimination learning requires sleep after training. Nature Neuroscience, 3, 1237–1238.CrossRefPubMedGoogle Scholar
  62. Stickgold, R., Whidbee, D., Schirmer, B., Patel, V., & Hobson, J. A. (2000b). Visual discrimination task improvement: A multi-step process occurring during sleep. Journal of Cognitive Neuroscience, 12, 246–254.CrossRefPubMedGoogle Scholar
  63. Vandist, K., De Schryver, M., & Rosseel, Y. (2009). Semisupervised category learning: the impact of feedback in learning the information-integration task. Attention, Perception & Psychophysics, 71(2), 328–341.CrossRefGoogle Scholar
  64. Vermaercke, B., Cop, E., Willems, S., D’Hooge, R., & Op de Beeck, H. P. (2014). More complex brains are not always better: rats outperform humans in implicit category-based generalization by implementing a similarity-based strategy. Psychonomic Bulletin & Review, 21, 1080–6.CrossRefGoogle Scholar
  65. Vong, W. K., Perfors, A., & Navarro, D. J. (2014). The Relevance of Labels in Semi-Supervised Learning Depends on Category Structure. In Proceedings of the 36th Annual Conference of the Cognitive Science Society, 1718–1723.Google Scholar
  66. Waldron, E. M., & Ashby, F. G. (2001). The effects of concurrent task interference on category learning: evidence for multiple category learning systems. Psychonomic Bulletin & Review, 8, 168–176.CrossRefGoogle Scholar
  67. Zeithamova, D., & Maddox, W. T. (2006). Dual-task interference in perceptual category learning. Memory & Cognition, 34, 387–398.CrossRefGoogle Scholar
  68. Zeithamova, D., & Maddox, W. T. (2007). The role of visuospatial and verbal working memory in perceptual category learning. Memory & Cognition, 35, 1380–1398.CrossRefGoogle Scholar
  69. Zhu, X., Gibson, B.R., Jun, K.-S., Rogers, T.T., Harrison, J. & Kalish, C. (2010). Cognitive models of test-item effects in human category learning. In Proceedings of the 27th International Conference on Machine Learning, 1247–1254.Google Scholar
  70. Zhu, X., & Goldberg, A. B. (2009). Introduction to Semi-Supervised Learning. Morgan and Claypool PublishersGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Katleen Vandist
    • 1
    • 2
    Email author
  • Gert Storms
    • 2
  • Eva Van den Bussche
    • 1
    • 2
  1. 1.Department of PsychologyVrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Experimental PsychologyKU LeuvenLeuvenBelgium

Personalised recommendations