Attention, Perception, & Psychophysics

, Volume 81, Issue 1, pp 296–309 | Cite as

Gradual formation of visual working memory representations of motion directions

  • Hiroyuki TsudaEmail author
  • Jun SaikiEmail author


Although it is well accepted that the formation of visual working memory (VWM) representations from simple static features is a rapid and effortless process that completes within several hundred milliseconds, the storage of motion information in VWM within that time scale can be challenging due to the limited processing capacity of the visual system. Memory formation can also be demanding especially when motion stimuli are visually complex. Here, we investigated whether the formation of VWM representations of motion direction is more gradual than that of static orientation and examined the effects of stimulus complexity on that process. To address these issues, we examined how the number and the precision of stored items in VWM develop over time by using a continuous report procedure. Results showed that while a viewing duration of several seconds was required for the successful storage of multiple motion directions in VWM regardless of motion complexity, the accumulation of memory precision was much slower when the motion stimulus was visually complex (Experiments 1 & 2). Additional experiments showed that the difference in memory performance for simple and complex motion stimuli cannot be explained by differences in signal-to-noise levels of the stimulus (Experiment 3). These results demonstrate remarkable temporal limitations in the formation of VWM representations for dynamic objects, and further show how this process is affected by stimulus properties such as visual complexity and signal-to-noise levels.


Visual working memory Motion perception Consolidation Complexity Noise 


  1. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111. PubMedCrossRefGoogle Scholar
  2. Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622–628. PubMedCrossRefGoogle Scholar
  3. Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995). Memory representations in natural tasks. Journal of Cognitive Neuroscience, 7(1), 66–80. PubMedCrossRefGoogle Scholar
  4. Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10):7.1–11, CrossRefGoogle Scholar
  5. Bays, P. M., Gorgoraptis, N., Wee, N., Marshall, L., & Husain, M. (2011). Temporal dynamics of encoding, storage, and reallocation of visual working memory. Journal of Vision, 11(10):1–15. CrossRefGoogle Scholar
  6. Becker, M. W., Miller, J. R., & Liu, T. (2013). A severe capacity limit in the consolidation of orientation information into visual short-term memory. Attention, Perception, & Psychophysics, 75(3), 415–425. CrossRefGoogle Scholar
  7. Bertenthal, B. I., & Pinto, J. (1994). Global processing of biological motion. Psychological Science, 5, 221–225. CrossRefGoogle Scholar
  8. Blake, R., Cepeda, N. J., & Hiris, E. (1997). Memory for visual motion. Journal of Experimental Psychology: Human Perception and Performance, 23(2), 353–369. PubMedCrossRefGoogle Scholar
  9. Blake, R., Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58:47-73. PubMedCrossRefGoogle Scholar
  10. Brady, T. F., Störmer, V. S., & Alvarez, G. A. (2016). Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proceedings of the National Academy of Sciences, 113(27), 7459–7464. CrossRefGoogle Scholar
  11. Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: A comparison of neuronal and psychophysical performance. The Journal of Neuroscience, 12(12), 4745–4765. PubMedCrossRefGoogle Scholar
  12. Chang, D. H. F., & Troje, N. F. (2008). Perception of animacy and direction from local biological motion signals. Journal of Vision, 8(5):3.1–10. CrossRefGoogle Scholar
  13. Chang, D. H. F., & Troje, N. F. (2009). Characterizing global and local mechanisms in biological motion perception. Journal of Vision, 9(5):8.1–10, CrossRefGoogle Scholar
  14. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55–81. CrossRefGoogle Scholar
  15. Curby, K. M., & Gauthier, I. (2007). A visual short-term memory advantage for faces. Psychonomic Bulletin & Review, 14(4), 620–628. CrossRefGoogle Scholar
  16. Curby, K. M., Glazek, K., & Gauthier, I. (2009). A visual short-term memory advantage for objects of expertise. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 94–107. PubMedCrossRefGoogle Scholar
  17. Ding, X., Zhao, Y., Wu, F., Lu, X., Gao, Z., & Shen, M. (2015). Binding biological motion and visual features in working memory. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 850–865. PubMedCrossRefGoogle Scholar
  18. Edwards, M., & Rideaux, R. (2013). How many motion signals can be simultaneously perceived? Vision Research, 76, 11–16. PubMedCrossRefGoogle Scholar
  19. Endress, A. D., & Potter, M. C. (2014). Large capacity temporary visual memory. Journal of Experimental Psychology: General, 143(2), 548–565. CrossRefGoogle Scholar
  20. Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 12(6), 1127–1133. CrossRefGoogle Scholar
  21. Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245. PubMedCrossRefGoogle Scholar
  22. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. PubMedCrossRefGoogle Scholar
  23. Foulsham, T., Walker, E., & Kingstone, A. (2011). The where, what and when of gaze allocation in the lab and the natural environment. Vision Research, 51(17), 1920–1931. PubMedCrossRefGoogle Scholar
  24. Gao, T., Gao, Z., Li, J., Sun, Z., & Shen, M. (2011). The perceptual root of object-based storage: An interactive model of perception and visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 37, 1803–1823. doi: PubMedCrossRefGoogle Scholar
  25. Gao, Z., Ding, X., Yang, T., Liang, J., & Shui, R. (2013). Coarse-to-fine construction for high-resolution representation in visual working memory. PLOS ONE, 8(2), e57913. PubMedPubMedCentralCrossRefGoogle Scholar
  26. Greenwood, J. A., & Edwards, M. (2009). The detection of multiple global directions: Capacity limits with spatially segregated and transparent-motion signals. Journal of Vision, 9(1), 40–40. doi: PubMedCrossRefGoogle Scholar
  27. Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791–804. PubMedCrossRefGoogle Scholar
  28. Jackson, M. C., Linden, D. E. J., Roberts, M. V., Kriegeskorte, N., & Haenschel, C. (2015). Similarity, not complexity, determines visual working memory performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1884–1892. PubMedCrossRefGoogle Scholar
  29. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201–211. CrossRefGoogle Scholar
  30. Jolicoeur, P., & Dell’Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36(2), 138–202. PubMedCrossRefGoogle Scholar
  31. Jovancevic, J., Sullivan, B., & Hayhoe, M. (2006). Control of attention and gaze in complex environments. Journal of Vision, 6(12), 1431–1450. PubMedCrossRefGoogle Scholar
  32. Kawasaki, M., Watanabe, M., & Okuda, J. (2008). Human posterior parietal cortex maintains color, shape and motion in visual short-term memory. Brain Research, 13, 4–6. doi: CrossRefGoogle Scholar
  33. Levin, D. T., Momen, N., Drivdahl, S. B., IV, & Simons, D. J. (2000). Change blindness blindness: The metacognitive error of overestimating change-detection ability. Visual Cognition, 7, 397–412. CrossRefGoogle Scholar
  34. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281. PubMedCrossRefGoogle Scholar
  35. Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 3911–400. CrossRefGoogle Scholar
  36. Makovski, T., & Jiang, Y. V. (2008). Proactive interference from items previously stored in visual working memory. Memory & Cognition, 36(1), 43–52. CrossRefGoogle Scholar
  37. Mance, I., Becker, M. W., & Liu, T. (2012). Parallel consolidation of simple features into visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 429–438. doi: PubMedCrossRefGoogle Scholar
  38. Miller, J., & Ulrich, R. (2001). On the analysis of psychometric functions: The Spearman-Karber method. Perception & Psychophysics, 63, 1399–1420. CrossRefGoogle Scholar
  39. O’Regan, J. K. (1992). Solving the “real” mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology, 46, 461–88. PubMedCrossRefGoogle Scholar
  40. Orhan, A. E., & Jacobs, R. A. (2014). Toward ecologically realistic theories in visual short-term memory research. Attention, Perception, & Psychophysics, 76(7), 2158–2170. CrossRefGoogle Scholar
  41. Pinto, Y., Sligte, I. G., Shapiro, K. L., & Lamme, V. A. F. (2013). Fragile visual short-term memory is an object-based and location-specific store. Psychonomic Bulletin & Review, 20(4), 732–739. CrossRefGoogle Scholar
  42. Poom, L. (2012). Memory of gender and gait direction from biological motion: Gender fades away but directions stay. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1091–1097. PubMedCrossRefGoogle Scholar
  43. Ricker, T. J. (2015). The role of short-term consolidation in memory persistence. AIMS Neuroscience, 2(4), 259–279. CrossRefGoogle Scholar
  44. Rideaux, R., Apthorp, D., & Edwards, M. (2015). Evidence for parallel consolidation of motion direction and orientation into visual short-term memory. Journal of Vision, 15(2), 17. PubMedCrossRefGoogle Scholar
  45. Schurgin, M. W., Wixted, J. T., & Brady, T. F. B. (2018). Psychological scaling reveals a single parameter framework for visual working memory. BioRxiv.
  46. Shaffer, J. P. (1986). Modified sequentially rejective multiple test procedures. Journal of American Statistical Association, 81, 826–831. CrossRefGoogle Scholar
  47. Shen, M., Gao, Z., Ding, X., Zhou, B., & Huang, X. (2014). Holding biological motion information in working memory. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1332–1345. PubMedCrossRefGoogle Scholar
  48. Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. (2008). Are there multiple visual short-term memory stores? PLOS ONE, 3(2), e1699. PubMedPubMedCentralCrossRefGoogle Scholar
  49. Smyth, M. M., Pearson, N. A., & Pendleton, L. R. (1988). Movement and working memory: Patterns and positions in space. The Quarterly Journal of Experimental Psychology Section A, 40(3), 497–514. CrossRefGoogle Scholar
  50. Sweeny, T. D., Haroz, S., & Whitney, D. (2013). Perceiving group behavior: Sensitive ensemble coding mechanisms for biological motion of human crowds. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 329–337. PubMedCrossRefGoogle Scholar
  51. Thurman, S. M., & Grossman, E. D. (2008). Temporal “bubbles” reveal key features for point-light biological motion perception. Journal of Vision, 8(3), 28.1–11. CrossRefGoogle Scholar
  52. Vanrie, J., & Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behavior Research Methods, Instruments, & Computers, 36, 625– 629. CrossRefGoogle Scholar
  53. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32, 1436-1451.
  54. Watamaniuk, S. N. J. (1993). Ideal observer for discrimination of the global direction of dynamic random-dot stimuli. Journal of the Optical Society of America A, 10(1), 16. CrossRefGoogle Scholar
  55. Whitney, D., & Yamanashi Leib, A. (2018). Ensemble perception. Annual Review of Psychology, 69(1), 105–129. PubMedCrossRefGoogle Scholar
  56. Wood, J. N. (2007). Visual working memory for observed actions. Journal of Experimental Psychology: General, 136(4), 639–652. doi: CrossRefGoogle Scholar
  57. Xu, Y., & Chun, M. M. (2009). Selecting and perceiving multiple visual objects. Trends in Cognitive Sciences, 13(4), 167–174. PubMedPubMedCentralCrossRefGoogle Scholar
  58. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(May), 233–236. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan

Personalised recommendations