Advertisement

Attention, Perception, & Psychophysics

, Volume 81, Issue 1, pp 253–269 | Cite as

Listening back in time: Does attention to memory facilitate word-in-noise identification?

  • T. M. Vanessa Chan
  • Claude Alain
Article

Abstract

The ephemeral nature of spoken words creates a challenge for oral communications where incoming speech sounds must be processed in relation to representations of just-perceived sounds stored in short-term memory. This can be particularly taxing in noisy environments where perception of speech is often impaired or initially incorrect. Usage of prior contextual information (e.g., a semantically related word) has been shown to improve speech in noise identification. In three experiments, we demonstrate a comparable effect of a semantically related cue word placed after an energetically masked target word in improving accuracy of target-word identification. This effect persisted irrespective of cue modality (visual or auditory cue word) and, in the case of cues after the target, lasted even when the cue word was presented up to 4 seconds after the target. The results are framed in the context of an attention to memory model that seeks to explain the cognitive and neural mechanisms behind processing of items in auditory memory.

Keywords

Auditory Attention Retro-cue Speech-in-noise Context 

Notes

Author note

T. M. Vanessa Chan, Department of Psychology, University of Toronto, Toronto, Ontario, Canada, and Rotman Research Institute, Baycrest, Toronto, Ontario, Canada; Claude Alain, Rotman Research Institute, Baycrest, Toronto, Ontario, Canada, Department of Psychology, Institute of Medical Sciences and Faculty of Music, University of Toronto, Toronto, Ontario, Canada.

This research was supported by a National Sciences and Engineering Research Council (NSERC) grant awarded to C.A.

References

  1. Astle, D. E., Summerfield, J., Griffin, I., & Nobre, A. C. (2012). Orienting attention to locations in mental representations. Attention, Perception, & Psychophysics, 74(1), 146–162.CrossRefGoogle Scholar
  2. Backer, K. C., & Alain, C. (2012). Orienting attention to sound object representations attenuates change deafness. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1554–1566.Google Scholar
  3. Backer, K. C., Binns, M., & Alain, C. (2015). Neural dynamics underlying attentional orienting to auditory representations in short-term memory. Journal of Neuroscience, 35(3), 1307–1318.CrossRefGoogle Scholar
  4. Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., . . . Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39(3), 445–459.CrossRefGoogle Scholar
  5. Bernstein, I. H., Bissonnette, V., Vyas, A., & Barclay, P. (1989). Semantic priming: Subliminal perception or context? Perception & Psychophysics, 45(2), 153–161.CrossRefGoogle Scholar
  6. Cabeza, R., Mazuz, Y. S., Stokes, J., Kragel, J. E., Woldorff, M. G., Ciaramelli, E., . . . Moscovitch, M. (2011). Overlapping parietal activity in memory and perception: Evidence for the attention to memory model. Journal of Cognitive Neuroscience, 23(11), 3209–3217.Google Scholar
  7. Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101.CrossRefGoogle Scholar
  8. Ciaramelli, E., Grady, C. L., & Moscovitch, M. (2008). Top-down and bottom-up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, 46(7), 1828–1851.CrossRefGoogle Scholar
  9. Daneman, M., & Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis. Psychonomic Bulletin & Review, 3(4), 422–433.CrossRefGoogle Scholar
  10. Davis, M. H., Ford, M. A., Kherif, F., & Johnsrude, I. S. (2011). Does semantic context benefit speech understanding through “top-down” processes? Evidence from time-resolved sparse fMRI. Journal of Cognitive Neuroscience, 23(12), 3914–3932.CrossRefGoogle Scholar
  11. Du, Y., Buchsbaum, B. R., Grady, C. L., & Alain, C. (2014). Noise differentially impacts phoneme representations in the auditory and speech motor systems. Proceedings of the National Academy of Sciences, 111(19), 7126–7131.CrossRefGoogle Scholar
  12. Falissard, B. (2012). psy: Various procedures used in psychometry (R Package Version 1.1) [Computer software]. Retrieved from https://CRAN.R-project.org/package=psy
  13. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.CrossRefGoogle Scholar
  14. Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127.CrossRefGoogle Scholar
  15. Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453–463.CrossRefGoogle Scholar
  16. Gilbert, R. A., Davis, M. H., Gaskell, M. G., & Rodd, J. M. (2018). Listeners and readers generalize their experience with word meanings across modalities. Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publication.  https://doi.org/10.1037/xlm0000532
  17. Golestani, N., Hervais-Adelman, A., Obleser, J., & Scott, S. K. (2013). Semantic versus perceptual interactions in neural processing of speech-in-noise. NeuroImage, 79, 52–61.CrossRefGoogle Scholar
  18. Golestani, N., Rosen, S., & Scott, S. K. (2009). Native-language benefit for understanding speech-in-noise: The contribution of semantics. Bilingualism: Language and Cognition, 12(3), 385–392.CrossRefGoogle Scholar
  19. Gregg, M. K., & Samuel, A. G. (2009). The importance of semantics in auditory representations. Attention, Perception, & Psychophysics, 71(3), 607–619.CrossRefGoogle Scholar
  20. Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176–1194.CrossRefGoogle Scholar
  21. Guediche, S., Reilly, M., Santiago, C., Laurent, P., & Blumstein, S. E. (2016). An fMRI study investigating effects of conceptually related sentences on the perception of degraded speech. Cortex, 79, 57–74.CrossRefGoogle Scholar
  22. Hervais-Adelman, A., Davis, M. H., Johnsrude, I. S., & Carlyon, R. P. (2008). Perceptual learning of noise vocoded words: Effects of feedback and lexicality. Journal of Experimental Psychology: Human Perception and Performance, 34(2), 460.Google Scholar
  23. Higgins, J. A., & Johnson, M. K. (2009). The consequence of refreshing for access to nonselected items in young and older adults. Memory & Cognition, 37(2), 164–174.CrossRefGoogle Scholar
  24. Higgins, J. A., & Johnson, M. K. (2013). Lost thoughts: Implicit semantic interference impairs reflective access to currently active information. Journal of Experimental Psychology: General, 142(1), 6.CrossRefGoogle Scholar
  25. Holcomb, P. J. (1988). Automatic and attentional processing: An event-related brain potential analysis of semantic priming. Brain and language, 35(1), 66–85.CrossRefGoogle Scholar
  26. Holcomb, P. J., & Neville, H. J. (1990). Auditory and visual semantic priming in lexical decision: A comparison using event-related brain potentials. Language and Cognitive Processes, 5(4), 281–312.CrossRefGoogle Scholar
  27. Hutchison, K. A. (2007). Attentional control and the relatedness proportion effect in semantic priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(4), 645.Google Scholar
  28. Johnson, M. K., Raye, C. L., Mitchell, K. J., Greene, E. J., Cunningham, W. A., & Sanislow, C. A. (2005). Using fMRI to investigate a component process of reflection: Prefrontal correlates of refreshing a just-activated representation. Cognitive, Affective, & Behavioral Neuroscience, 5(3), 339–361.CrossRefGoogle Scholar
  29. Johnsrude, I. S., Mackey, A., Hakyemez, H., Alexander, E., Trang, H. P., & Carlyon, R. P. (2013). Swinging at a cocktail party: Voice familiarity aids speech perception in the presence of a competing voice. Psychological Science, 24(10), 1995–2004.CrossRefGoogle Scholar
  30. Kalikow, D. N., Stevens, K. N., & Elliott, L. L. (1977). Development of a test of speech intelligibility in noise using sentence materials with controlled word predictability. The Journal of the Acoustical Society of America, 61(5), 1337–1351.CrossRefGoogle Scholar
  31. Killion, M. C., Niquette, P. A., Gudmundsen, G. I., Revit, L. J., & Banerjee, S. (2004). Development of a quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and hearing-impaired listeners. The Journal of the Acoustical Society of America, 116(4), 2395–2405.CrossRefGoogle Scholar
  32. Lawrence, M. A. (2016). ez: Easy analysis and visualization of factorial experiments (R Package Version 4.4-0) [Computer software]. Retrieved from https://CRAN.R-project.org/package=ez
  33. Lim, S.-J., Wöstmann, M., & Obleser, J. (2015). Selective attention to auditory memory neurally enhances perceptual precision. Journal of Neuroscience, 35(49), 16094–16104.CrossRefGoogle Scholar
  34. McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18(1), 1–86. doi: 10.1016/0010-0285(86)90015-0Google Scholar
  35. McClelland, J. L., Mirman, D., & Holt, L. L. (2006). Are there interactive processes in speech perception? Trends in Cognitive Sciences, 10(8), 363–369.CrossRefGoogle Scholar
  36. Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90(2), 227.CrossRefGoogle Scholar
  37. Neely, J. H. (1977). Semantic priming and retrieval from lexical memory: Roles of inhibitionless spreading activation and limited-capacity attention. Journal of Experimental Psychology: General, 106(3), 226.CrossRefGoogle Scholar
  38. Nelson, D., McEvoy, C., & Schreiber, T. (2004). The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36, 402–407.Google Scholar
  39. Obleser, J., & Kotz, S. A. (2011). Multiple brain signatures of integration in the comprehension of degraded speech. NeuroImage, 55(2), 713–723.CrossRefGoogle Scholar
  40. Pichora-Fuller, M. K., Schneider, B. A., & Daneman, M. (1995). How young and old adults listen to and remember speech in noise. The Journal of the Acoustical Society of America, 97(1), 593–608.CrossRefGoogle Scholar
  41. R Core Team. (2017). R: A language and environment for statistical computing [Computer software]. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  42. Rogers, C. S., Jacoby, L. L., & Sommers, M. S. (2012). Frequent false hearing by older adults: The role of age differences in metacognition. Psychology and Aging, 27(1), 33.CrossRefGoogle Scholar
  43. Rossell, S. L., Bullmore, E. T., Williams, S. C., & David, A. S. (2001). Brain activation during automatic and controlled processing of semantic relations: A priming experiment using lexical-decision. Neuropsychologia, 39(11), 1167–1176.CrossRefGoogle Scholar
  44. Rönnberg, J., Lunner, T., Zekveld, A., Sörqvist, P., Danielsson, H., Lyxell, B., . . . Rudner, M. (2013). The ease of language understanding (ELU) model: Theoretical, empirical, and clinical advances. Frontiers in Systems Neuroscience, 7(31).  https://doi.org/10.3389/fnsys.2013.00031
  45. Sheldon, S., Pichora-Fuller, M. K., & Schneider, B. A. (2008). Priming and sentence context support listening to noise-vocoded speech by younger and older adults. The Journal of the Acoustical Society of America, 123(1), 489–499.CrossRefGoogle Scholar
  46. Sohoglu, E., Peelle, J. E., Carlyon, R. P., & Davis, M. H. (2012). Predictive top-down integration of prior knowledge during speech perception. Journal of Neuroscience, 32(25), 8443–8453.CrossRefGoogle Scholar
  47. Strauß, A., Kotz, S. A., & Obleser, J. (2013). Narrowed expectancies under degraded speech: Revisiting the N400. Journal of Cognitive Neuroscience, 25(8), 1383–1395.CrossRefGoogle Scholar
  48. Unsworth, N., & Engle, R. W. (2007). On the division of short-term and working memory: An examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133(6), 1038.CrossRefGoogle Scholar
  49. Wechsler, D. (1997). WMS-III: Wechsler memory scale administration and scoring manual. San Antonio, TX: Psychological Corporation.Google Scholar
  50. Wilson, R. H. (2003). Development of a speech-in-multitalker-babble paradigm to assess word-recognition performance. Journal of the American Academy of Audiology, 14(9), 453–470.Google Scholar
  51. Zekveld, A. A., Rudner, M., Johnsrude, I. S., Festen, J. M., Van Beek, J. H., & Rönnberg, J. (2011). The influence of semantically related and unrelated text cues on the intelligibility of sentences in noise. Ear and hearing, 32(6), e16-e25.CrossRefGoogle Scholar
  52. Zimmermann, J. F., Moscovitch, M., & Alain, C. (2016). Attending to auditory memory. Brain Research, 1640, 208–221.CrossRefGoogle Scholar
  53. Zimmermann, J. F., Moscovitch, M., & Alain, C. (2017). Long-term memory biases auditory spatial attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(10), 1602.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of TorontoTorontoCanada
  2. 2.Rotman Research Institute, Baycrest Health SciencesTorontoCanada

Personalised recommendations