Advertisement

Attention, Perception, & Psychophysics

, Volume 81, Issue 1, pp 71–84 | Cite as

Effect of local fluency gradient of objects creates search asymmetry

  • J. Yamashita
  • T. KumadaEmail author
Article

Abstract

Search asymmetry is a phenomenon in which search efficiency in a visual-search task differs for searching for an X target among Y distractors from search for a Y target among X distractors. Previous research shows that search asymmetry is mainly produced by a difference in the whole signal strength of items or a difference in item familiarity. This study reports that a difference in the local fluency within items also affects search efficiency and generates search asymmetry. Fluency is a value that correlates with the processing efficiency of an item. In particular, five experiments reveal that search efficiency for two part items depends on whether a fluent part is the top or bottom portion of a target (vs. distractor). We argue that this type of search asymmetry implicates the operation of an unknown mechanism that detects local fluency gradient in visual processing.

Keywords

Eye movements and visual attention Visual search 

References

  1. Brainard, D. H., (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436.CrossRefGoogle Scholar
  2. Chang, B. P., & Mitchell, C. J., (2009). Processing fluency as a predictor of salience asymmetries in the Implicit Association Test. The Quarterly Journal of Experimental Psychology, 62(10), 2030–2054. doi: https://doi.org/10.1080/17470210802651737 CrossRefGoogle Scholar
  3. Conci, M., Töllner, T., Leszczynski, M., & Müller, H. J. (2011). The time-course of global and local attentional guidance in Kanizsa-figure detection. Neuropsychologia, 49(9), 2456–2464. doi:10.1016/j.neuropsychologia.2011.04.023Google Scholar
  4. Cramer, O. A., van Ravenzwaaij, D., Matzke, D., Steingroever, H., Wetzels, R., Grasman, P. P. P. R., Waldorp, J. L., & Wagenmakers E. J. (2016). Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies. Psychonomic bulletin & review, 23, 640–647.Google Scholar
  5. Duncan, J., & Humphreys, G., W., (1992). Beyond the search surface: Visual search and attentional engagement. Journal of Experimental Psychology: Human Perception and Performance, 18(2), 589–593.Google Scholar
  6. Duncan, J., & Humphreys, G. W., (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458.CrossRefGoogle Scholar
  7. Enns, J. T., & Rensink, R. A. (1990). Influence of scene-based properties on visual search. Science, 247(4943), 721–723.CrossRefGoogle Scholar
  8. Garner, W. R., (1962). Uncertainty and structure as psychological concepts. New York: Wiley.Google Scholar
  9. Garner, W. R., (1974). The processing of information and structure. Potomac: Erlbaum.Google Scholar
  10. Kleiner, M., Brainard, D., & Pelli D. (2007). What’s new in Psychtoolbox-3? [ECVP abstract supplement]. Perception, 36. doi: https://doi.org/10.1068/v07821
  11. Logan, G. D. (1994). Spatial attention and the apprehension of spatial relations. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 1015–1036.Google Scholar
  12. Malinowski, P., & Hübner, R., (2001). The effect of familiarity on visual-search performance: Evidence for learned basic features. Perception & Psychophysics, 63(3), 458–463.CrossRefGoogle Scholar
  13. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.CrossRefGoogle Scholar
  14. Rauschenberger, R., & Yantis, S. (2006). Perceptual encoding efficiency in visual search. Journal of Experimental Psychology: General, 135(1), 116–31.CrossRefGoogle Scholar
  15. Shen, J., & Reingold, E. M., (2001). Visual search asymmetry: The influence of stimulus familiarity and low-level features. Perception & Psychophysics, 63(3), 464–475.CrossRefGoogle Scholar
  16. Treisman, A. & Gormican, S. (1988). Feature analysis in early vision: evidence from search asymmetries. Psychological Review, 95(1), 15–48.CrossRefGoogle Scholar
  17. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.CrossRefGoogle Scholar
  18. von der Heydt, R., Peterhans, E., & Baumgartner, G. (1984). Illusory contours and cortical neuron responses. Science, 244(4654), 1260–1262.CrossRefGoogle Scholar
  19. Wang, Q., Cavanagh, P., & Green, M. (1994). Familiarity and pop-out in visual search. Perception & Psychophysics, 56(5), 495–500.CrossRefGoogle Scholar
  20. Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238.CrossRefGoogle Scholar
  21. Wolfe, J. M. (1998). Visual search. In H. Pashler (Ed.), Attention (pp. 13–74). London: Psychology Press.Google Scholar
  22. Wolfe, J. M. (2001). Asymmetries in visual search: An introduction. Perception & Psychophysics, 63(3), 381–389.CrossRefGoogle Scholar
  23. Wolfe, J. M., Cave, K. R., & Francel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 419–433. Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Graduate School of InformaticsKyoto UniversityKyotoJapan
  2. 2.NTT Yokosuka Research and Development Center1-1, Hikarinooka, Yokosuka, KanagawaJapan

Personalised recommendations