Advertisement

Effects of canonical color, luminance, and orientation on sustained inattentional blindness for scenes

Article

Abstract

Whether scene gist perception occurs automatically and unconsciously has been the subject of much debate. In addition to demonstrating a new method that adapts the Mack and Rock (1998) inattentional blindness cross procedure to allow for sustained inattentional blindness over a large number of trials, we report evidence from a series of experiments that shows that canonical scene features reduce inattentional blindness to scenes by facilitating the extraction of scene gist. When attentional demands are high, the combination of canonical color, canonical luminance, and canonical orientation reduces rates of inattentional blindness. However, when attentional demands are reduced, canonical features are independently sufficient to facilitate gist extraction and to capture attention. These results demonstrate that canonical color, canonical luminance, and canonical orientation all contribute to scene gist perception, and that when attentional demands are high, only highly canonical stimuli are sufficient to capture attention.

Keywords

Divided attention Inattention Color Light Scene perception 

References

  1. Bar, M., & Biederman, I. (1998). Subliminal visual priming. Psychological Science, 9, 464–469. doi: https://doi.org/10.1111/1467-9280.00086 CrossRefGoogle Scholar
  2. Bartram, D. J. (1974). The role of visual and semantic codes in object naming. Cognitive Psychology, 6, 325–356. doi: https://doi.org/10.1016/0010-0285(74)90016-4 CrossRefGoogle Scholar
  3. Becklen, R., & Cervone, D. (1983). Selective looking and the noticing of unexpected events. Memory & Cognition, 11, 601–608. doi: https://doi.org/10.3758/BF03197675 CrossRefGoogle Scholar
  4. Biederman, I., & Cooper, E. E. (1991). Evidence for complete translational and reflectional invariance in visual object priming. Perception, 20, 585–593. doi: https://doi.org/10.1068/p200585 CrossRefPubMedGoogle Scholar
  5. Biederman, I., & Ju, G. (1988). Surface versus edge-based determinants of visual recognition. Cognitive Psychology, 20, 38–64.CrossRefPubMedGoogle Scholar
  6. Biederman, I., Mezzanotte, R. J., & Rabinowitz, J. C. (1982). Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology, 14, 143–177. doi: https://doi.org/10.1016/0010-0285(82)90007-X CrossRefPubMedGoogle Scholar
  7. Branigan, H. P., Pickering, M. J., & Cleland, A. A. (1999). Syntactic priming in written production: Evidence for rapid decay. Psychonomic Bulletin & Review, 6, 635–640.CrossRefGoogle Scholar
  8. Castelhano, M. S., & Henderson, J. M. (2008). The influence of color on the perception of scene gist. Journal of Experimental Psychology: Human Perception and Performance, 34, 660–675. doi: https://doi.org/10.1037/0096-1523.34.3.660 PubMedGoogle Scholar
  9. Chaffin, D. B., Andersson, G. B. J., & Martin, B. J. (1999). Occupational biomechanics (3rd ed.). New York, NY: Wiley.Google Scholar
  10. Clarke, J., Ro, T., & Mack, A. (2013). The persistence of inattentional blindness and the absence of priming by natural scenes. Journal of Vision, 13(9), 1136. doi: https://doi.org/10.1167/13.9.1136
  11. Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213–220.Google Scholar
  12. Cohen, M. A., Alvarez, G. A., & Nakayama, K. (2011). Natural-scene perception requires attention. Psychological Science, 22, 1165–1172. doi: https://doi.org/10.1177/0956797611419168 CrossRefPubMedGoogle Scholar
  13. Davidoff, J. B., & Ostergaard, A. L. (1988). The role of colour in categorial judgements. Quarterly Journal of Experimental Psychology, 40A, 533–544.CrossRefGoogle Scholar
  14. Delorme, A., Richard, G., & Fabre-Thorpe, M. (2000). Ultra-rapid categorisation of natural scenes does not rely on colour cues: A study in monkeys and humans. Vision Research, 40, 2187–2200. doi: https://doi.org/10.1016/S0042-6989(00)00083-3 CrossRefPubMedGoogle Scholar
  15. Evans, K. K., & Treisman, A. (2005). Perception of objects in natural scenes: Is it really attention free? Journal of Experimental Psychology: Human Perception and Performance, 31, 1476–1492. doi: https://doi.org/10.1037/0096-1523.31.6.1476 PubMedGoogle Scholar
  16. Fryar, C. D., Gu, Q., Ogden, C. L., & Flegal, K. M. (2016). Anthropometric reference data for children and adults: United States, 2011–2014 (Vol. 39). Washington, DC: National Center for Health Statistics.Google Scholar
  17. Gamer, M., Lemon, J., Fellows, I., & Singh, P. (2012). irr: Various coefficients of interrater reliability and agreement. Retrieved from http://CRAN.R-project.org/package=irr.
  18. Goffaux, V., Jacques, C., Mouraux, A., Oliva, A., Schyns, P., & Rossion, B. (2005). Diagnostic colours contribute to the early stages of scene categorization: Behavioural and neurophysiological evidence. Visual Cognition, 12, 878–892. doi: https://doi.org/10.1080/13506280444000562 CrossRefGoogle Scholar
  19. Haber, R. N., & Hershenson, M. (1965). Effects of repeated brief exposures on the growth of a percept. Journal of Experimental Psychology, 69, 40–46. doi: https://doi.org/10.1037/h0021572 CrossRefPubMedGoogle Scholar
  20. Hansen, B. C., & Loschky, L. C. (2013). The contribution of amplitude and phase spectra-defined scene statistics to the masking of rapid scene categorization. Journal of Vision, 13(13), 21. doi: https://doi.org/10.1167/13.13.21
  21. Intraub, H. (1997). The representation of visual scenes. Trends in Cognitive Sciences, 1, 217–222. doi: https://doi.org/10.1016/S1364-6613(97)01067-X CrossRefPubMedGoogle Scholar
  22. Kiefer, M., & Spitzer, M. (2000). Time course of conscious and unconscious semantic brain activation. NeuroReport, 11, 2401–2407.CrossRefPubMedGoogle Scholar
  23. Li, F. F., VanRullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention. Proceedings of the National Academy of Sciences, 99, 9596–9601.CrossRefGoogle Scholar
  24. Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 7, 3416–3468.Google Scholar
  25. Loschky, L. C., Hansen, B. C., Sethi, A., & Pydimarri, T. N. (2010). The role of higher order image statistics in masking scene gist recognition. Attention, Perception, & Psychophysics, 72, 427–444. doi: https://doi.org/10.3758/APP.72.2.427 CrossRefGoogle Scholar
  26. Loschky, L. C., Hansen, B., Fintzi, A., Bjerg, A., Ellis, K., Freeman, T., . . . Larson, A. (2009). Basic level scene categorization is affected by unrecognizable category-specific image features. Journal of Vision, 9(8), 948. doi: https://doi.org/10.1167/9.8.948 CrossRefGoogle Scholar
  27. Loschky, L. C., Sethi, A., Simons, D. J., Pydimarri, T. N., Ochs, D., & Corbeille, J. L. (2007). The importance of information localization in scene gist recognition. Journal of Experimental Psychology: Human Perception and Performance, 33, 1431–1450. doi: https://doi.org/10.1037/0096-1523.33.6.1431 PubMedGoogle Scholar
  28. Mack, A., & Clarke, J. (2012). Gist perception requires attention. Visual Cognition, 20, 300–327. doi: https://doi.org/10.1080/13506285.2012.666578 CrossRefGoogle Scholar
  29. Mack, A., & Rock, I. (1998). Inattentional blindness. Cambridge, MA: MIT Press.Google Scholar
  30. Neisser, U. (1979). The control of information pickup in selective looking. In A. D. Pick (Ed.), Perception and its development: A tribute to Eleanor J. Gibson (pp. 201–219). Hillsdale, NJ: Erlbaum.Google Scholar
  31. Neisser, U., & Becklen, R. (1975). Selective looking: Attending to visually specified events. Cognitive Psychology, 7, 480–494. doi: https://doi.org/10.1016/0010-0285(75)90019-5 CrossRefGoogle Scholar
  32. Nijboer, T. C. W., Kanai, R., de Haan, E. H. F., & van der Smagt, M. J. (2008). Recognising the forest, but not the trees: An effect of colour on scene perception and recognition. Consciousness and Cognition, 17, 741–752. doi: https://doi.org/10.1016/j.concog.2007.07.008 CrossRefPubMedGoogle Scholar
  33. Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 34, 72–107.CrossRefPubMedGoogle Scholar
  34. Oliva, A., & Schyns, P. G. (2000). Diagnostic colors mediate scene recognition. Cognitive Psychology, 41, 176–210. doi: https://doi.org/10.1006/cogp.1999.0728 CrossRefPubMedGoogle Scholar
  35. Potter, M. C. (1975). Meaning in visual search. Science, 187, 965–966. doi: https://doi.org/10.1126/science.1145183 CrossRefPubMedGoogle Scholar
  36. Rousselet, G. A., Fabre-Thorpe, M., & Thorpe, S. J. (2002). Parallel processing in high-level categorization of natural images. Nature Neuroscience, 5, 629–630. doi: https://doi.org/10.1038/nn866 CrossRefPubMedGoogle Scholar
  37. Sagarin, B. J., Ambler, J. K., & Lee, E. M. (2014). An ethical approach to peeking at data. Perspectives on Psychological Science, 9, 293–304.CrossRefPubMedGoogle Scholar
  38. Schacter, D. L., Delaney, S. M., & Merikle, E. P. (1990). Priming of nonverbal information and the nature of implicit memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 26, pp. 83–123). San Diego, CA: Academic Press. doi: https://doi.org/10.1016/S0079-7421(08)60052-3 Google Scholar
  39. Schyns, P. G., & Oliva, A. (1994). From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition. Psychological Science, 5, 195–200. doi: https://doi.org/10.1111/j.1467-9280.1994.tb00500.x CrossRefGoogle Scholar
  40. Sergent, C., Wyart, V., Babo-Rebelo, M., Cohen, L., Naccache, L., & Tallon-Baudry, C. (2013). Cueing attention after the stimulus is gone can retrospectively trigger conscious perception. Current Biology, 23, 150–155. doi: https://doi.org/10.1016/j.cub.2012.11.047 CrossRefPubMedGoogle Scholar
  41. Shore, D. I., & Klein, R. M. (2000). The effects of scene inversion on change blindness. Journal of General Psychology, 127, 27–43.CrossRefPubMedGoogle Scholar
  42. Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28, 1059–1074. doi: https://doi.org/10.1068/p2952 CrossRefPubMedGoogle Scholar
  43. Stoffregen, T. A., Baldwin, C. A., & Flynn, S. B. (1993). Noticing of unexpected events by adults with and without mental retardation. American Journal on Mental Retardation, 98, 273–284.PubMedGoogle Scholar
  44. Ward, E. J., & Scholl, B. J. (2015). Inattentional blindness reflects limitations on perception, not memory: Evidence from repeated failures of awareness. Psychonomic Bulletin & Review, 22, 722–727. doi: https://doi.org/10.3758/s13423-014-0745-8 CrossRefGoogle Scholar
  45. Wichmann, F. A., Sharpe, L. T., & Gegenfurtner, K. R. (2002). The contributions of color to recognition memory for natural scenes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 509–520. doi: https://doi.org/10.1037/0278-7393.28.3.509 PubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Program in PsychologyGraduate Center of the City University of New YorkNew YorkUSA
  2. 2.Department of PsychologyNew School for Social ResearchNew YorkUSA

Personalised recommendations