Monocular channels have a functional role in phasic alertness and temporal expectancy

  • William SabanEmail author
  • Noam Weinbach
  • Shai Gabay


The literature has long emphasized the neocortex’s role in the tangled phasic-alertness and temporal-expectancy processes. In this work, we examined whether subcortical, monocular mechanisms have a functional role in these processes. This was done by assessing phasic alertness and temporal expectancy independently using a cue–target eye-of-origin manipulation. Participants performed target detection tasks in which a central cue and its ensuing peripheral target were each presented either to the same eye or to a different eye. In Experiment 1, phasic alertness, independent of temporal expectancy, was manipulated by presenting an alerting cue prior to the target presentation. The alerting effect elicited by the cue lasted for a longer duration when the cue and target were presented to the same eye than when they were presented to different eyes, indicating the involvement of subcortical regions in phasic alertness. In Experiment 2, the cue’s temporal predictability regarding the target’s onset time was manipulated by changing the cue–target interval’s foreperiod distribution. A modulation in temporal expectancy was found when both the cue and the target were presented to the same eye, demonstrating the importance of subcortical mechanisms in temporal expectancy. Together, the results demonstrate that monocular channels are functionally involved in both phasic alertness and temporal expectancy. This study suggests that both phasic alertness and temporal expectancy are functionally dependent on monocular channels of the visual stream, and highlights the importance of direct examination of primitive, subcortical regions in higher cognitive functioning (e.g., temporal expectancy).


Attention Cortex Temporal expectancy Phasic alertness Subcortical regions 



  1. Batson, M. A., Beer, A. L., Seitz, A. R., & Watanabe, T. (2011). Spatial shifts of audio-visual interactions by perceptual learning are specific to the trained orientation and eye. Seeing and Perceiving, 24, 579–594. CrossRefGoogle Scholar
  2. Baumeister, A. A., & Joubert, C. E. (1969). Interactive effects on reaction time of preparatory interval length and preparatory interval frequency. Journal of Experimental Psychology, 82, 393.CrossRefGoogle Scholar
  3. Bueti, D., Bahrami, B., & Walsh, V. (2008). Sensory and association cortex in time perception. Journal of Cognitive Neuroscience, 20, 1054–1062. CrossRefGoogle Scholar
  4. Bueti, D., Bahrami, B., Walsh, V., & Rees, G. (2010). Encoding of temporal probabilities in the human brain. Journal of Neuroscience, 30, 4343–4352. CrossRefGoogle Scholar
  5. Bullier, J. (2001). Integrated model of visual processing. Brain Research Reviews, 36, 96–107.CrossRefGoogle Scholar
  6. Callejas, A., Lupiáñez, J., & Tudela, P. (2004). The three attentional networks: On their independence and interactions. Brain and Cognition, 54, 225–227. CrossRefGoogle Scholar
  7. Correa Á., Lupiáñez, J., Milliken, B., & Tudela, P. (2004). Endogenous temporal orienting of attention in detection and discrimination tasks. Perception & Psychophysics, 66, 264–278. CrossRefGoogle Scholar
  8. Coull, J., & Nobre, A. C. (2008). Dissociating explicit timing from temporal expectation with fMRI. Current Opinion in Neurobiology, 18, 137–144. CrossRefGoogle Scholar
  9. Coull, J. T., Frith, C. D., Büchel, C., & Nobre, A. C. (2000). Orienting attention in time: Behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia, 38, 808–819. CrossRefGoogle Scholar
  10. Coull, J. T., Frith, C. D., Frackowiak, R. S. J., & Grasby, P. M. (1996). A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory. Neuropsychologia, 34, 1085–1095.CrossRefGoogle Scholar
  11. Coull, J. T., & Nobre, A. C. (1998). Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. Journal of Neuroscience, 18, 7426–7435.CrossRefGoogle Scholar
  12. Coull, J. T., Vidal, F., Nazarian, B., & Macar, F. (2004). Functional anatomy of the attentional modulation of time estimation. Science, 303, 1506–1508.CrossRefGoogle Scholar
  13. Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26, 471–479. CrossRefGoogle Scholar
  14. Faul, F., Erdfelder, E., Lang, A., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. CrossRefGoogle Scholar
  15. Gabay, S., & Behrmann, M. (2014). Attentional dynamics mediated by subcortical mechanisms. Attention, Perception, & Psychophysics, 76, 2375–2388. CrossRefGoogle Scholar
  16. Gabay, S., Burlingham, C., & Behrmann, M. (2014a). The nature of face representations in subcortical regions. Neuropsychologia, 59, 35–46.CrossRefGoogle Scholar
  17. Gabay, S., & Henik, A. (2008). The effects of expectancy on inhibition of return. Cognition, 106, 1478–1486. CrossRefGoogle Scholar
  18. Gabay, S., & Henik, A. (2010). Temporal expectancy modulates inhibition of return in a discrimination task. Psychonomic Bulletin & Review, 17, 47–51. CrossRefGoogle Scholar
  19. Gabay, S., Nestor, A., Dundas, E., & Behrmann, M. (2014b). Monocular advantage for face perception implicates subcortical mechanisms in adult humans. Journal of Cognitive Neuroscience, 26, 927–937.CrossRefGoogle Scholar
  20. Genovesio, A., Tsujimoto, S., & Wise, S. P. (2006). Neuronal activity related to elapsed time in prefrontal cortex. Journal of Neurophysiology, 95, 3281–3285. CrossRefGoogle Scholar
  21. Ghose, G. M., & Maunsell, J. H. (2002). Attentional modulation in visual cortex depends on task timing. Nature, 419, 616–620.CrossRefGoogle Scholar
  22. Horton, J. C., Dagi, L. R., McCrane, E. P., & de Monasterio, F. M. (1990). Arrangement of ocular dominance columns in human visual cortex. Archives of Ophthalmology, 108, 1025–1031.CrossRefGoogle Scholar
  23. Janssen, P., & Shadlen, M. N. (2005). A representation of the hazard rate of elapsed time in macaque area LIP. Nature Neuroscience, 8, 234–241.CrossRefGoogle Scholar
  24. Karni, A., & Sagi, D. (1991). Where practice makes perfect in texture discrimination: Evidence for primary visual cortex plasticity. Proceedings of the National Academy of Sciences, 88, 4966–4970.CrossRefGoogle Scholar
  25. LaBar, K. S., Gitelman, D. R., Mesulam, M. M., & Parrish, T. B. (2001). Impact of signal-to-noise on functional MRI of the human amygdala. NeuroReport, 12, 3461–3464.CrossRefGoogle Scholar
  26. Lamme, V. A. F., Supèr, H., & Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology, 8, 529–535. CrossRefGoogle Scholar
  27. Leon, M. I., & Shadlen, M. N. (2003). Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron, 38, 317–327.CrossRefGoogle Scholar
  28. Marrocco, R. T., & Davidson, M. C. (1998). Neurochemistry of attention. In R. Parasuraman (Ed.), The attentive brain (pp. 35–50). Cambridge: MIT Press.Google Scholar
  29. Menon, R. S., Ogawa, S., Strupp, J. P., & Uǧurbil, K. (1997). Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. Journal of Neurophysiology, 77, 2780–2787.CrossRefGoogle Scholar
  30. Morrison, J. H., & Foote, S. L. (1986). Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in Old and New World monkeys. Journal of Comparative Neurology, 243, 117–138.CrossRefGoogle Scholar
  31. Niemi, P., & Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological Bulletin, 89, 133–162. CrossRefGoogle Scholar
  32. Nobre, A. C., Correa, A., & Coull, J. T. (2007). The hazards of time. Current Opinion in Neurobiology, 17, 465–470.CrossRefGoogle Scholar
  33. Onoe, H., Komori, M., Onoe, K., Takechi, H., Tsukada, H., & Watanabe, Y. (2001). Cortical networks recruited for time perception: A monkey positron emission tomography (PET) study. NeuroImage, 13, 37–45.CrossRefGoogle Scholar
  34. Périn, B., Godefroy, O., Fall, S., & De Marco, G. (2010). Alertness in young healthy subjects: An fMRI study of brain region interactivity enhanced by a warning signal. Brain and Cognition, 72, 271–281.CrossRefGoogle Scholar
  35. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89. CrossRefGoogle Scholar
  36. Posner, M. I. (1988). Structures and functions of selective attention. In T. Boll & B. Bryant (Eds.), Master lectures in clinical neuropsychology and brain function: Research, measurement, and practice (pp. 171–202). Washington, DC: American Psychological Association.Google Scholar
  37. Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78, 391–408. CrossRefGoogle Scholar
  38. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. CrossRefGoogle Scholar
  39. Saban, W., Gabay, S., & Kalanthroff, E. (2018a). More than just channeling: The role of subcortical mechanisms in executive functions—Evidence from the Stroop task. Acta Psychologica, 189, 36–42. CrossRefGoogle Scholar
  40. Saban, W., Klein, R. M., & Gabay, S. (2018b). Probabilistic versus “pure” volitional orienting: A monocular difference. Attention, Perception, & Psychophysics, 80, 669–676. CrossRefGoogle Scholar
  41. Saban, W., Sekely, L., Klein, R. M., & Gabay, S. (2017). Endogenous orienting in the archer fish. Proceedings of the National Academy of Sciences, 114, 7577–7581. CrossRefGoogle Scholar
  42. Saban, W., Sekely, L., Klein, R. M., & Gabay, S. (2018c). Monocular channels have a functional role in endogenous orienting. Neuropsychologia, 111, 1–7. CrossRefGoogle Scholar
  43. Salvioni, P., Murray, M. M., Kalmbach, L., & Bueti, D. (2013). How the visual brain encodes and keeps track of time. Journal of Neuroscience, 33, 12423–12429.CrossRefGoogle Scholar
  44. Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10, 211–223. CrossRefGoogle Scholar
  45. Self, M. W., & Roelfsema, P. R. (2010). A monocular, unconscious form of visual attention. Journal of Vision, 10(4), 17. CrossRefGoogle Scholar
  46. Spagna, A., Martella, D., Sebastiani, M., Maccari, L., Marotta, A., & Casagrande, M. (2014). Efficiency and interactions of alerting, orienting and executive networks: The impact of imperative stimulus type. Acta Psychologica, 148, 209–215. CrossRefGoogle Scholar
  47. Sturm, W., & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. NeuroImage, 14, S76–S84.CrossRefGoogle Scholar
  48. Stuss, D. T., & Alexander, M. P. (2005). Does damage to the frontal lobes produce impairment in memory? Current Directions in Psychological Science, 14, 84–88. CrossRefGoogle Scholar
  49. Tipper, C., & Kingstone, A. (2005). Is inhibition of return a reflexive effect? Cognition, 97, B55–B62. CrossRefGoogle Scholar
  50. Triviño, M., Correa, A., Arnedo, M., & Lupiáñez, J. (2010). Temporal orienting deficit after prefrontal damage. Brain, 133(Part 4), 1173–1785. CrossRefGoogle Scholar
  51. Vallesi, A., McIntosh, A. R., Shallice, T., & Stuss, D. T. (2009). When time shapes behavior: fMRI evidence of brain correlates of temporal monitoring. Journal of Cognitive Neuroscience, 21, 1116–1126.CrossRefGoogle Scholar
  52. Vallesi, A., & Shallice, T. (2007). Developmental dissociations of preparation over time: Deconstructing the variable foreperiod phenomena. Journal of Experimental Psychology: Human Perception and Performance, 33, 1377–1388. Google Scholar
  53. Vallesi, A., Shallice, T., & Walsh, V. (2007). Role of the prefrontal cortex in the foreperiod effect: TMS evidence for dual mechanisms in temporal preparation. Cerebral Cortex, 17, 466–474.CrossRefGoogle Scholar
  54. Weinbach, N., & Henik, A. (2012). Temporal orienting and alerting—The same or different? Frontiers in Psychology, 3, 236. CrossRefGoogle Scholar
  55. Weinbach, N., & Henik, A. (2013). The interaction between alerting and executive control: Dissociating phasic arousal and temporal expectancy. Attention, Perception, & Psychophysics, 75, 1374–1381. CrossRefGoogle Scholar
  56. Whitehead, R. (1991). Right hemisphere processing superiority during sustained visual attention. Journal of Cognitive Neuroscience, 3, 329–334.CrossRefGoogle Scholar
  57. Wundt, W. (1887). Über Ziele und Wege der Völkerpsychologie. Philosophische Studien, 4, 1–27.Google Scholar
  58. Yanaka, H. T., Saito, D. N., Uchiyama, Y., & Sadato, N. (2010). Neural substrates of phasic alertness: A functional magnetic resonance imaging study. Neuroscience Research, 68, 51–58. CrossRefGoogle Scholar
  59. Yoshida, Y., Tanabe, H. C., Hayashi, M. J., Kawamichi, H., Kochiyama, T., & Sadato, N. (2013). The neural substrates of the warning effect: A functional magnetic resonance imaging study. Neuroscience Research, 76, 230–239. CrossRefGoogle Scholar
  60. Zhaoping, L. (2008). Attention capture by eye of origin singletons even without awareness—A hallmark of a bottom-up saliency map in the primary visual cortex. Journal of Vision, 8(5), 1.1–18.

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of Psychology and the Institute of Information Processing and Decision Making (IIPDM)University of HaifaHaifaIsrael
  2. 2.Department of PsychologyUniversity of HaifaHaifaIsrael

Personalised recommendations