Guidance and selection history in hybrid foraging visual search

  • Jeremy M. WolfeEmail author
  • Matthew S. Cain
  • Avigael M. Aizenman


In Hybrid Foraging tasks, observers search for multiple instances of several types of target. Collecting all the dirty laundry and kitchenware out of a child’s room would be a real-world example. How are such foraging episodes structured? A series of four experiments shows that selection of one item from the display makes it more likely that the next item will be of the same type. This pattern holds if the targets are defined by basic features like color and shape but not if they are defined by their identity (e.g., the letters p & d). Additionally, switching between target types during search is expensive in time, with longer response times between successive selections if the target type changes than if they are the same. Finally, the decision to leave a screen/patch for the next screen in these foraging tasks is imperfectly consistent with the predictions of optimal foraging theory. The results of these hybrid foraging studies cast new light on the ways in which prior selection history guides subsequent visual search in general.


Visual search Priming Working memory 



This work was supported by NIH EY017001, NIH CA207490, US Army Natick Soldier Research, Development, and Engineering Center (NSRDEC) W911QY-16-2-0003, and the UC Berkeley Graduate Fellowship. We thank Iris Wiegand and Nurit Gronau for comments and Abla Alaoui-Soce for help conducting the research.


  1. Altmann, E. M., & Gray, W. D. (2008). An integrated model of cognitive control in task switching. Psychol Rev, 115(3), 602-639. doi: CrossRefGoogle Scholar
  2. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437-443. doi: CrossRefGoogle Scholar
  3. Boettcher, S., & Wolfe, J. M. (2015). Searching for the right word: Hybrid visual and memory search for words. Atten Percept Psychophys, 77(4), 1132-1142.CrossRefGoogle Scholar
  4. Bond, A. (1982). The Bead Game: Response Strategies in Free Assortment. Human Factors [0018-7208] yr:1982 vol:24 iss:1 pg:101 24(2), 101-110.Google Scholar
  5. Bond, A. B. (1983). Visual search and selection of natural stimuli in the pigeon: the attention threshold hypothesis. J Exp Psychol Anim Behav Process, 9(3), 292-306.CrossRefGoogle Scholar
  6. Bond, A. B. (2007). The evolution of color polymorphism: Crypticity searching images, and apostatic selection. Annual Review of Ecology Evolution and Systematics, 38, 489-514. doi: CrossRefGoogle Scholar
  7. Bond, A. B., & Kamil, A. C. (2002). Visual predators select for crypticity and polymorphism in virtual prey. Nature, 415(6872), 609-613.CrossRefGoogle Scholar
  8. Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proc Natl Acad Sci U S A, 105(38), 14325–14329.CrossRefGoogle Scholar
  9. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433-436.CrossRefGoogle Scholar
  10. Cain, M. S., Vul, E., Clark, K., & Mitroff, S. R. (2012). A Bayesian optimal foraging model of human visual search. Psychol Sci(23), 1047-1054. doi: CrossRefGoogle Scholar
  11. Charnov, E. L. (1976). Optimal foraging, the marginal value theorem, Theoretical Population Biology, 9, 129-136.CrossRefGoogle Scholar
  12. Chen, L. (2005). The topological approach to perceptual organization. Visual Cognition, 12(4), 553-637.CrossRefGoogle Scholar
  13. Cowan, N. (1995). Attention and Memory: An integrated framework. New York: Oxford U press.Google Scholar
  14. Cunningham, C. A., & Wolfe, J. M. (2014). The role of object categories in hybrid visual and memory search. J Exp Psychol Gen, 143(4), 1585-1599. doi: CrossRefGoogle Scholar
  15. Dowd, E. W., Pearson, J. M., & Egner, T. (2017). Decoding working memory content from attentional biases. [journal article]. Psychonomic Bulletin & Review, 24(4), 1252-1260. doi: CrossRefGoogle Scholar
  16. Downing, P., & Dodds, C. (2004). Competition in visual working memory for control of search. Visual Cognition, 11(6), 689-703.CrossRefGoogle Scholar
  17. Drew, T., Boettcher, S. P., & Wolfe, J. M. (2015). Searching while loaded: Visual working memory does not interfere with hybrid search efficiency but hybrid search uses working memory capacity. Psychonomic Bulletin & Review, 23(1), 201-212. doi: CrossRefGoogle Scholar
  18. Dukas, R. (2002). Behavioural and ecological consequences of limited attention. Philos Trans R Soc Lond B Biol Sci, 357(1427), 1539-1547. doi: CrossRefGoogle Scholar
  19. Ehinger, K. A., & Wolfe, J. M. (2016). When is it time to move to the next map? Optimal foraging in guided visual search. Atten Percept Psychophys, 78(7), 2135-2151. doi: CrossRefGoogle Scholar
  20. Failing, M., & Theeuwes, J. (2017). Selection history: How reward modulates selectivity of visual attention. [journal article]. Psychonomic Bulletin & Review. doi:
  21. Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: a priority map for target selection. Trends Cogn Sci, 10(8), 382-390.CrossRefGoogle Scholar
  22. Grubert, A., & Eimer, M. (2014). Rapid Parallel Attentional Target Selection in Single-Color and Multiple-Color Visual Search. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 86-101. doi: Google Scholar
  23. Hills, T. T., & Dukas, R. (2012). The Evolution of Cognitive Search. In P. M. Todd, T. T. Hills & T. W. Robbins (Eds.), Cognitive Search: Evolution, Algorithms, and the Brain (pp. 11-24). Cambridge: MIT Press.Google Scholar
  24. Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., Couzin, I. D., & The Cognitive Search Research Group* (*Bateson, M., Cools, R., Dukas, R., Giraldeau, L., Macy, M.W., Page, S.E., Shiffrin, R.M., Stephens, D.W., Uzzi, B., Wolfe, J.W.). (2015). Exploration versus exploitation in space, mind, and society. Trends Cogn Sci, 19(1), 46-54.CrossRefGoogle Scholar
  25. Hollingworth, A., & Luck, S. J. (2009). The role of visual working memory (VWM) in the control of gaze during visual search. Atten Percept Psychophys, 71(4), 936-949.CrossRefGoogle Scholar
  26. Hutchinson, J. B., & Turk-Browne, N. B. (2012). Memory-guided attention: control from multiple memory systems. Trends Cogn Sci, 16(12), 576-579. doi:
  27. Ishihara, I. (1980). Ishihara's Tests for Color-Blindness: Concise Edition. Tokyo: Kanehara & Co., LTDGoogle Scholar
  28. Kleiner, M., Brainard, D. H., & Pelli, D. (2007). What’s new in Psychtoolbox-3? Perception, 36, ECVP Abstract Supplement.Google Scholar
  29. Kristjansson, A. (2015). Reconsidering visual search. i-Perception, 6(6). doi:
  30. Kristjánsson, Á. (2016). The Slopes Remain the Same: Reply to Wolfe (2016). i-Perception, 7(6), 2041669516673383. doi: CrossRefGoogle Scholar
  31. Kristjansson, Å., Johannesson, O. I., & Thornton, I. M. (2014). Common Attentional Constraints in Visual Foraging. PLoS ONE, 9(6), e100752. doi: CrossRefGoogle Scholar
  32. Kristjánsson, T., & Kristjánsson, Á. (2018). Foraging through multiple target categories reveals the flexibility of visual working memory. Acta Psychologica, 183, 108-115. doi: CrossRefGoogle Scholar
  33. Lamy, D., Antebi, C., Aviani, N., & Carmel, T. (2008). Priming of Pop-out provides reliable measures of target activation and distractor inhibition in selective attention. Vision Research, 48(1), 30-41. doi: CrossRefGoogle Scholar
  34. Liu, T., & Jigo, M. (2017). Limits in feature-based attention to multiple colors. [journal article]. Attention, Perception, & Psychophysics, 79(8), 2327-2337. doi: CrossRefGoogle Scholar
  35. Lumbreras, B., Donat, L., & Hernández-Aguado, I. (2010). Incidental findings in imaging diagnostic tests: a systematic review. The British Journal of Radiology, 83(988), 276-289. doi: CrossRefGoogle Scholar
  36. Luria, R., & Vogel, E. K. (2011). Visual search demands dictate reliance on working memory storage. J Neurosci, 31(16), 6199-6207. doi: CrossRefGoogle Scholar
  37. McNamara, J., & Houston, A. (1985). A simple model of information use in the exploitation of patchily distributed food. . Animal Behaviour, 33, 553-560.CrossRefGoogle Scholar
  38. Monsell, S. (2003). Task switching. Trends Cogn Sci, 7(3), 134-140.CrossRefGoogle Scholar
  39. Olivers, C. N., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: when it guides attention and when it does not. Trends Cogn Sci, 15(7), 327-334. Google Scholar
  40. Olsson, O., & Brown, J. S. (2006). The foraging benefits of information and the penalty of ignorance. . Oikos, 112(2), 260-273. doi: CrossRefGoogle Scholar
  41. Ort, E., Fahrenfort, J. J., & Olivers, C. N. L. (2017). Lack of Free Choice Reveals the Cost of Having to Search for More Than One Object. Psychological Science, 28(8), 1137-1147. doi: CrossRefGoogle Scholar
  42. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437-442.CrossRefGoogle Scholar
  43. Pirolli, P. (2007). Information Foraging Theory. New York: Oxford U Press.CrossRefGoogle Scholar
  44. Pirolli, P., & Card, S. (1999). Information foraging. [Article]. Psychological Review, 106(4), 643-675.CrossRefGoogle Scholar
  45. Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977). Optimal Foraging: A Selective Review of Theory and Tests. The Quarterly Review of Biology, 52(2), 137-154.CrossRefGoogle Scholar
  46. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1-66.CrossRefGoogle Scholar
  47. Serences, J. T., & Yantis, S. (2006). Selective visual attention and perceptual coherence. Trends in Cognitive Sciences, 10(1), 38-45.CrossRefGoogle Scholar
  48. Stephens, D. W., & Krebs, J. R. (1986). Foraging Theory. Princeton: Princeton U. Press.Google Scholar
  49. Theeuwes, J. (2013). Feature-based attention: it is all bottom-up priming. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628). doi:
  50. Theeuwes, J. (2018). Visual Selection: Usually fast and automatic; seldom slow and volitional. Journal of Cognition, in press.Google Scholar
  51. Wolfe, J. M. (1998). What do 1,000,000 trials tell us about visual search? Psychological Science, 9(1), 33-39.CrossRefGoogle Scholar
  52. Wolfe, J. M. (2012). Saved by a log: How do humans perform hybrid visual and memory search? Psychol Sci, 23(7), 698-703. doi: CrossRefGoogle Scholar
  53. Wolfe, J. M. (2013). When is it time to move to the next raspberry bush? Foraging rules in human visual search. Journal of Vision, 13(3), 10. doi: CrossRefGoogle Scholar
  54. Wolfe, J. M. (2016). Visual Search Revived: The Slopes Are Not That Slippery: A comment on Kristjansson (2015). i-Perception, May-June 2016, 1–6. doi: doi:
  55. Wolfe, J. M. (2017). Mixed hybrid search: A model system to study incidental finding errors in radiology. paper presented at the 2017 Medical Image Perception Meeting in Houston TX (July 12-15, 2017).Google Scholar
  56. Wolfe, J. M., Aizenman, A. M., Boettcher, S. E. P., & Cain, M. S. (2016). Hybrid Foraging Search: Searching for multiple instances of multiple types of target. Vision Res, 119, 50-59.CrossRefGoogle Scholar
  57. Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 483-502.Google Scholar
  58. Wolfe, J. M., Cain, M. S., & Alaoui-Soce, A. (2018). Hybrid value foraging: How the value of targets shapes human foraging behavior. Atten Percept Psychophys. doi:
  59. Wolfe, J. M., Drew, T., & Boettcher, S. E. P. (2014). Hybrid Search: Picking up a thread from Schneider and Shiffrin (1977). In J. Raaijmakers (Ed.), Cognitive Modeling in Perception and Memory: A Festschrift for Richard M. Shiffrin. New York: Psychology Press.Google Scholar
  60. Wolfe, J.M., Horowitz, T., Kenner, N. M., Hyle, M., & Vasan, N. (2004). How fast can you change your mind? The speed of top-down guidance in visual search. Vision Research, 44(12), 1411-1426.CrossRefGoogle Scholar
  61. Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. [Review Article] Nature Human Behaviour, 1, 0058. doi: CrossRefGoogle Scholar
  62. Wolfe, J. M., Palmer, E. M., & Horowitz, T. S. (2010). Reaction time distributions constrain models of visual search. Vision Res, 50, 1304-1311.CrossRefGoogle Scholar
  63. Wolfe, J. M., Yee, A., & Friedman-Hill, S. R. (1992). Curvature is a basic feature for visual search. Perception, 21, 465-480.CrossRefGoogle Scholar
  64. Zhang, J., Gong, X., Fougnie, D., & Wolfe, J. M. (2017). How humans react to changing rewards during visual foraging. Atten Percept Psychophys, 79(8), 2299–2309 doi: CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Jeremy M. Wolfe
    • 1
    • 2
    • 3
    Email author
  • Matthew S. Cain
    • 4
    • 5
  • Avigael M. Aizenman
    • 6
  1. 1.Visual Attention Laboratory, Department of SurgeryBrigham and Women’s HospitalBostonUSA
  2. 2.Department of Ophthalmology and RadiologyHarvard Medical SchoolBostonUSA
  3. 3.Visual Attention Laboratory, Department of SurgeryBrigham and Women’s HospitalCambridgeUSA
  4. 4.Development, and Engineering CenterUS Army Natick Soldier ResearchNatickUSA
  5. 5.Center for Applied Brain and Cognitive SciencesTufts UniversityMedfordUSA
  6. 6.Vision Science DepartmentUniversity of California BerkeleyBerkeleyUSA

Personalised recommendations