Task-irrelevant optic flow guides attention in visual search

  • Yoko HiguchiEmail author
  • Satoshi Inoue
  • Terumasa Endo
  • Takatsune Kumada


Motion is an important factor in visual information processing. Studies have shown that global optic flow guides attention, but it remains unclear whether this attentional guidance occurs regardless of top-down attentional control settings for another endogenous cue. To address this issue, we developed a visual search paradigm in which a task-irrelevant optic flow starts and stops prior to a visual search task itself. Participants first observed an initial optic flow motion pattern for a brief period; next, they searched a static display for a target amongst multiple distractors. Results showed faster target detection when a target’s locus coincided with the implied focus of expansion (FOE) from the preceding optic flow (vs. other loci). Eye-movement analyses revealed that initial saccades were drawn to the FOE during optic flow exposures and that relatively few saccades were needed to find targets contingent to the preceding FOE. The advantage of FOE for finding target occurred even when a salient feature singleton captured attention or when a task-relevant feature singleton was prioritized. Results of six experiments suggest that attentional control settings for a feature singleton do not over-ride a sustained influence of optic flow on attentional guidance.


Optic flow Attention Visual search Eye movement 



This study was conducted using the Eyelink and related facilities of Kokoro Research Center, Kyoto University. We thank Kensuke Takii and Jian Guo for the data collection. We also thank Jun Saiki, Yoshiyuki Ueda, Yasunori Kinosada, Shunsuke Kumakiri, Kansai Wakate, and Kumada lab for helpful conversations.


  1. Abrams, R. A., & Christ, S. E. (2003). Motion Onset Captures Attention. Psychological Science, 14(5), 427–432. doi: CrossRefPubMedGoogle Scholar
  2. Al-Aidroos, N., Guo, R. M., & Pratt, J. (2010). You can’t stop new motion: Attentional capture despite a control set for colour. Visual Cognition, 18(6), 859–880. doi: CrossRefGoogle Scholar
  3. Anstis, S., Verstraten, F. A. ., & Mather, G. (1998). The motion aftereffect. Trends in Cognitive Sciences, 2(3), 111–117. doi: CrossRefPubMedGoogle Scholar
  4. Becker, S. I., Folk, C. L., & Remington, R. W. (2010). The role of relational information in contingent capture. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1460–1476. doi: PubMedGoogle Scholar
  5. Borji, A., Feng, M., & Lu, H. (2016). Vanishing point attracts gaze in free-viewing and visual search tasks. Journal of Vision, 16(14), 18. doi: CrossRefPubMedGoogle Scholar
  6. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. doi: CrossRefPubMedGoogle Scholar
  7. Chun, M. M., & Jiang, Y. (1998). Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. doi: CrossRefPubMedGoogle Scholar
  8. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–91. doi: CrossRefPubMedGoogle Scholar
  9. Fischer, J., & Whitney, D. (2014). Serial dependence in visual perception. Nature Neuroscience, 17(5), 738–743. doi: CrossRefPubMedGoogle Scholar
  10. Folk, C. L., & Annett, S. (1994). Do locally defined feature discontinuities capture attention? Perception & Psychophysics, 56(3), 277–287. doi: CrossRefGoogle Scholar
  11. Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030–1044. doi: PubMedGoogle Scholar
  12. Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception and Performance, 20(2), 317–329. doi: PubMedGoogle Scholar
  13. Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65(7), 999–1010. doi: CrossRefGoogle Scholar
  14. Gibson, J. J. (1950). The perception of the visual world. Boston: Houghton Mifflin.Google Scholar
  15. Hillstrom, A. P., & Yantis, S. (1994). Visual motion and attentional capture. Perception and Psychophysics, 55(4), 399–411. doi: CrossRefPubMedGoogle Scholar
  16. Holland, B. S., & Copenhaver, M. D. (1988). Improved Bonferroni-type multiple testing procedures. Psychological Bulletin, 104(1), 145–149. doi: CrossRefGoogle Scholar
  17. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203. doi: CrossRefPubMedGoogle Scholar
  18. Kanai, R., & Verstraten, F. A. J. (2005). Perceptual manifestations of fast neural plasticity: Motion priming, rapid motion aftereffect and perceptual sensitization. Vision Research, 45(25-26), 3109–3116. doi: CrossRefPubMedGoogle Scholar
  19. Kawahara, J., Yanase, K., & Kitazaki, M. (2012). Attentional capture by the onset and offset of motion signals outside the spatial focus of attention. Journal of Vision, 12(12), 1–13. doi: CrossRefGoogle Scholar
  20. Kiyonaga, A., Scimeca, J. M., Bliss, D. P., & Whitney, D. (2017). Serial dependence across perception, attention, and memory. Trends in Cognitive Sciences, 21(7), 493–497. doi: CrossRefPubMedGoogle Scholar
  21. Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147. doi: CrossRefPubMedGoogle Scholar
  22. Knapen, T., Rolfs, M., & Cavanagh, P. (2009). The reference frame of the motion aftereffect is retinotopic. Journal of Vision, 9(5), 1–6. doi: CrossRefGoogle Scholar
  23. Maljkovic, V., & Nakayama, K. E. N. (1994). Priming of pop-out : I. Role of Features 22(6), 657–672. doi: Google Scholar
  24. Maljkovic, V., & Nakayama, K. E. N. (1996). Priming of pop-out : II . The role of Position, 58(7), 977–991. doi: Google Scholar
  25. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. doi: CrossRefPubMedGoogle Scholar
  26. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention and Performance X: Control of Language Processes, 32, 531–556.Google Scholar
  27. Rossini, J. C. (2014). Looming motion and visual attention. Psychology and Neuroscience, 7(3), 425–431. doi: CrossRefGoogle Scholar
  28. Schreij, D., Los, S. a, Theeuwes, J., Enns, J. T., & Olivers, C. N. L. (2014). The interaction between stimulus-driven and goal-driven orienting as revealed by eye movements. Journal of Experimental Psychology: Human Perception and Performance, 40(1), 378–390. doi: PubMedGoogle Scholar
  29. Shaffer, J. P. (1986). Modified sequentially rejective multiple test procedures. Journal of the American Statistical Association, 81(395), 826–831. doi: CrossRefGoogle Scholar
  30. Shirai, N., & Imura, T. (2016). Infant-specific gaze patterns in response to radial optic flow. Scientific Reports, 6, 34734. doi: CrossRefPubMedGoogle Scholar
  31. Takeuchi, T. (1997). Visual search of expansion and contraction. Vision Research, 37(15), 2083–2090. doi: CrossRefPubMedGoogle Scholar
  32. Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50(2), 184–193. doi: CrossRefGoogle Scholar
  33. Ueda, Y., Kamakura, Y., & Saiki, J. (2017). Eye movements converge on vanishing points during visual search. Japanese Psychological Research, 59(2), 109–121. doi: CrossRefGoogle Scholar
  34. von Mühlenen, A., & Lleras, A. (2007). No-onset looming motion guides spatial attention. Journal of Experimental Psychology. Human Perception and Performance, 33(6), 1297–1310. doi: CrossRefGoogle Scholar
  35. Wang, S., Fukuchi, M., Koch, C., & Tsuchiya, N. (2012). Spatial attention is attracted in a sustained fashion toward singular points in the optic flow. PLoS ONE, 7(8), e41040. doi: CrossRefPubMedGoogle Scholar
  36. Warren, W. H., Morris, M. W., & Kalish, M. (1988). Perception of translational heading from optical flow. Journal of Experimental Psychology: Human Perception and Performance, 14(4), 646–660. doi: PubMedGoogle Scholar
  37. Watanabe, K. (2001). Modulation of spatial attention with unidirectional field motion : an implication for the shift of the OKN beating field, 41, 801–814.Google Scholar
  38. Wohlgemuth, A. (1911). On the affect-effect of seen movement. British Journal of Psychology, Monograph Supplement, (1), 1–117.Google Scholar
  39. Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601–621. doi: PubMedGoogle Scholar
  40. Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 121–134. doi: PubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Yoko Higuchi
    • 1
    • 2
    Email author
  • Satoshi Inoue
    • 3
  • Terumasa Endo
    • 3
  • Takatsune Kumada
    • 1
  1. 1.Graduate School of InformaticsKyoto UniversityKyotoJapan
  2. 2.Department of Functional Brain Imaging Research, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
  3. 3.TOYOTA Motor CorporationAichiJapan

Personalised recommendations