Skip to main content
Log in

Tribological performance of Cu−Ni alloy nanoparticles synthesized using a pulsed-wire evaporation method

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Cu−Ni alloy nanoparticles were produced using a pulsed-wire evaporation method in Ar gas. The synthesized Cu−Ni alloy nanoparticles had an average size of 150 nm, were spherical in shape and agglomerated. We investigated the tribological propeties of dispersion-stabilized Cu−Ni alloy nanoparticles when used as a solid lubricant in oil at ambient temperature. The sedimentation behavior of Cu−Ni alloy nanoparticles in oil was examined using Turbiscan LAb. The particles were clearly quantified using delta backscattering profiles and peak thickness kinetics as functions of time. The rubbing surfaces were characterized after a friction test using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). We found that dispersed Cu−Ni nanoparticles as a solid lubricant in oil had superior dispersion stability properties for over 48 h. Dispersed Cu nanoparticles in oil showed a low friction coefficient and good wear rate compared to oil only. Dispersed Cu−Ni alloy nanoparticles had superior friction reduction and antiwear properties compared to Cu nanoparticles, and these effects increased with the Ni content in the alloy. However, non-dispersed Cu−Ni alloy nanoparticles had poor antiwear properties. Dispersion-stabilized Cu−Ni alloy nanoparticles in oil enhanced the rolling effect of spherical nanoparticles between rubbing surfaces during friction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vanhulsel, F. Velasco, R. Jacobs, L. Eersels, D. Havermans, E. W. Roberts, I. Sherrington, M. J. Anderson, and L. Gaillard, Tribol. Int. 40, 1186 (2007).

    Article  CAS  Google Scholar 

  2. S. J. Kim, M. H. Cho, K. H. Cho, and H. Jang, Tribol. Int. 40, 15 (2007).

    Article  Google Scholar 

  3. E. Fernández Rico, I. Minondo, and D. García Cuervo, Wear 262, 1399 (2007).

    Article  Google Scholar 

  4. P. Waara, J. Hannu, T. Norrby, and Å. Byheden, Tribol. Int. 34, 547 (2001).

    Article  CAS  Google Scholar 

  5. K. J. Wahl, L. E. Seitzman, R. N. Bolster, I. L. Singer, and M. B. Peterson, Sur. Coat. Tech. 89, 245 (1997).

    Article  CAS  Google Scholar 

  6. S. Tarasov, A. Kolubaev, S. Belyaev, M. Lerner, and F. Tepper, Wear 252, 63 (2002).

    Article  CAS  Google Scholar 

  7. Y. Y. Wu, W. C. Tsui, and T. C. Liu, Wear 262, 819 (2007).

    Article  CAS  Google Scholar 

  8. J. F. Zhou, J. J. Yang, Z. J. Zhang, W. M. Liu, and Q. J. Xue, Mater. Res. Bull. 34, 1361 (1999).

    Article  CAS  Google Scholar 

  9. C. P. Mulligan and D. Gall, Sur. Coat. Tech. 200, 1495 (2005).

    Article  CAS  Google Scholar 

  10. J. H. Ouyang, S. Sasaki, T. Murakami, and K. Umeda, Mater. Sci. Eng. A 386, 234 (2004).

    Google Scholar 

  11. B. Subramonian, K. Kato, Koshi Adachi, and K. S. Ramakrishnan, Wear 256, 1182 (2004).

    Article  CAS  Google Scholar 

  12. S. Qiu, Z. Zhou, J. Dong, and G. Chen, J. Tribol. 123, 441 (2001).

    Article  CAS  Google Scholar 

  13. A. Hernandez Battez, J. E. Fernandez Rico, A. Navas Arias, J. L. Viesca Rodriguez, R. Chou Rodriguez, and J. M. Diaz Fernandez, Wear 261, 256 (2006).

    Article  CAS  Google Scholar 

  14. J. Hershberger, O. O. Ajayi, and G. R. Fenske, Tribol. Int. 38, 299 (2005).

    Article  CAS  Google Scholar 

  15. L. Rapoport, V. Leshchinsky, M. Lvovsky, I. Lapsker, Yu Volovik, and R. Tenne, Tribol. Int. 35, 47 (2002).

    Article  CAS  Google Scholar 

  16. L. Rapoport, V. Leshchinsky, M. Lvovsky, I. Lapsker, Yu. Volovik, Y. Feldman, R. Popovitz-Biro, and R. Tenne, Wear 255, 794 (2003).

    Article  CAS  Google Scholar 

  17. G. H. Lee, J. H. Park, C. K. Rhee, and W. W. Kim, J. Ind. Eng. Chem. 9, 71 (2003).

    CAS  Google Scholar 

  18. O. Mengual, G. Meunier, I. Cayre, K. Puech, and P. Snabre, Coll. Surf. A: Physicochem. Eng. Aspects 152, 111 (1999).

    Article  CAS  Google Scholar 

  19. E. H. Lee, M. K. Lee, and C. K. Rhee, Mater. Sci. Eng. A 449, 765 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeongseok Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, J., Rhee, C. Tribological performance of Cu−Ni alloy nanoparticles synthesized using a pulsed-wire evaporation method. Met. Mater. Int. 14, 425–432 (2008). https://doi.org/10.3365/met.mat.2008.08.425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/met.mat.2008.08.425

Keywords

Navigation