Advertisement

Modern Ground-Based Solar Telescopes and Requirements for Their Automation Systems

  • A. A. LubkovEmail author
  • Yu. A. Popov
Automation Systems in Scientific Research and Industry
  • 8 Downloads

Abstract

This paper systematizes and generalizes data on the specific features, operation modes, and technical characteristics of world-class ground-based solar telescopes in order to obtain information required to develop and design an automated control systems for the large solar telescope included in the National Heliogeophysical Complex of the Russian Academy of Sciences.

Keywords

automated system for controlling a solar telescope and observatory active and adaptive optics controller 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. Kovadlo, A. A. Lubkov, A. N. Bevzov, et al., “Automation System for the Large Solar Vacuum Telescope,” Avtometriya 52 (2), 97–106 (2016) [Optoelectron., Instrum. Data Process. 52 (2), 187–195 (2016)].Google Scholar
  2. 2.
    Hubble Space Telescope. https://en.wikipedia.org/wiki/Hubble Space Telescope.Google Scholar
  3. 3.
    McMath-Pierce Solar Telescope. https://en.wikipedia.org/wiki/McMath%E2%80%93Pierce solar telescope.Google Scholar
  4. 4.
    Low-Cost Solar Adaptive Optics. https://web.archive.org/web/20160221131712, http://www.noao.edu/noao/staff/keller/irao.Google Scholar
  5. 5.
    The GST (Goode Solar Telecope). BBSO Big Bear Solar Observatory. http://www.bbso.njit.edu.Google Scholar
  6. 6.
    Zh. Li, Ch. Fang, Y. Guo, et al., “High-Resolution Observations of a Large Fan-Shaped Surge,” Astrophys. J. 826 (2), 217L (2016). http://iopscience.iop.org/article/10.3847/0004-637X/826/2/217/pdf.ADSCrossRefGoogle Scholar
  7. 7.
    “A&A Special Issue: GREGOR First Results,” Astron. & Astrophys. 596, 1–2 (2016). https://www.aanda.org/images/stories/PressRelease/2016/gregor/prGREGOR.pdf.Google Scholar
  8. 8.
    R. Schlichenmaier, O. von der Lühe, S. Hoch, et al., “Active Region Fine Structure Observed at 0.0800 Resolution,” Astron. & Astrophys. N AA 2016 28561 (2018). https://arxiv.org/pdf/1607.07094.pdf.Google Scholar
  9. 9.
    C. Denker, P. R. Goode, D. Ren, et al., “Progress on the 1.6-Meter New Solar Telescope at Big Bear Solar Observatory,” Proc. SPIE 6267, 62670A (2006). http://www.bbso.njit.edu/pgoode/txt/txt/denker1303.pdf.Google Scholar
  10. 10.
    Observatories. GREGOR. Telescope and Optics. http://www.leibniz-kis.de/en/observatories/gregor/telescopeand-optics.Google Scholar
  11. 11.
    C. Denker, O. von der Lühe, A. Feller, et al., “A Retrospective of the GREGOR Solar Telescope in Scientific Literature,” Astron. Nachr. 333 (9), 810–815 (2012). http://www2.mps.mpg.de/dokumente/publikationen/solanki/j361.pdf.ADSCrossRefGoogle Scholar
  12. 12.
    K. Daniel, Inouye Solar Telescope. M1 Assembly. https://dkist.nso.edu/tel/m1a.Google Scholar
  13. 13.
    K. Daniel, Top End Optical Assembly. https://dkist.nso.edu/tel/teoa.Google Scholar
  14. 14.
    National Large Solar Telescope. Indian Institute of Astrophysics Detailed Concept Design Study Rep. (2009). ftp://ftp.iiap.res.in/rangaraj/DPR ver4.7.pdf.Google Scholar
  15. 15.
    S. V. Olemskoi, Implementing the Project of the National Heliogeophysical Complex of the Russian Academy of Sciences (Novosibirsk, 2017). http://www.sbras.ru/files/files/prezidium20171221/1 olemskoy.pdf.Google Scholar
  16. 16.
    European Solar Telescope Conceptual Design Study Rep. (2011). RPT-EST-0001, Is. 2.A. http://istar.ll.iac.es/files/58cef4ec1579d9e39754c76d5.pdf.Google Scholar
  17. 17.
    S. Shumko, N. Gorceix, S. Choia, et al., “AO-308: The High-Order Adaptive Optics System at Big Bear Solar Observatory,” Proc. SPIE 9148, 914835 (2014). https://www.researchgate.net/profile/Sergey Shumko/publication/269320473 AO-308 The high-order adaptive optics system at Big Bear Solar Observatory/links/54c158330cf25b4b80720f08/AO-308-The-high-order-adaptive-optics-system-at-Big-Bear-Solar-Observatory.pdf.CrossRefGoogle Scholar
  18. 18.
    W. Schmidt, O. von der Luhe, R. Volkmer, et al., “The 1.5 Meter Solar Telescope GREGOR,” Astron. Nachr. 333 (9), 796–809 (2012). http://www2.mps.mpg.de/dokumente/publikationen/solanki/j360.pdf.ADSCrossRefGoogle Scholar
  19. 19.
    1600-Actuator Deformable Mirror Prepped for Hawaii Solar telescope //Optics. org. 3 Aug., 2015. http://optics.org/news/6/7/44.Google Scholar
  20. 20.
    Northrop Grumman Successfully Delivers Deformable Mirror for World’s Largest Solar Telescope. July, 2015. https://news.northropgrumman.com/news/releases/northrop-grumman-successfully-delivers-deformablemirror-for-world-s-largest-solar-telescope.Google Scholar
  21. 21.
    L. Johnson, K. Cummings, M. Drobilek, et al., “Status of the DKIST Solar Adaptive Optics System,” in AO4ELT Conference Rep. Puerto de la Cruz, Tenerife, 28 June, 2017. http://www.iac.es/congreso/AO4ELT5/media/wednesday/ao4elt5 marino.pdf.Google Scholar
  22. 22.
    M. Demidov, “National Large Solar Telescope of Russia,” in Proc. of the 40th COSPAR Scientific Assembly. Moscow, Russia, 2–10 Aug., 2014. Vol. 40. Id. D2.3-44-14. http://adsabs.harvard.edu/abs/2014cosp...40E.681D.Google Scholar
  23. 23.
    “Developing the Pilot Project of a Large Solar Telescope with a Mirror Diameter of 3 m,” in Report on the Scientific Research and Scientific Organization Activity of the Institute of Solar-Terrestrial Physics of the Russian Academy of Sciences (ISTP RAS) in 2014 (ISTP RAS, Irkutsk, 2015). http: //ru.iszf.irk.ru/images/a/a2/%D0%9E%D1%82%D1%87%D0%B5%D1%82 %D0%98%D0%A1%D0%97%D0%A4 %D0%A1%D0%9E %D0 %A0%D0%90%D0%9D %D0%B7%D0%B0 2014.pdf.Google Scholar
  24. 24.
    D. Soltau, T. Berkefeld, J. Sanchez Capuchino, et al., “Adaptive Optics and MCAO for the 4-m European Solar Telescope EST,” Proc. SPIE. 7736, 77360U (2010). https://www.spiedigitallibrary.org/conference-proceedingsof-spie/7736/77360U/Adaptive-optics-and-MCAO-for-the-4-m-European-Solar/10.1117/12.856851.full.CrossRefGoogle Scholar
  25. 25.
    D. Schmidt, J. Marino, N. Gorceix, et al., “From Clear to DKIST: Advancing Solar MCAO from 1.6 to 4 Meters,” Proc. SPIE 10703, 1070326 (2018). https://www.spiedigitallibrary.org/conference-proceedings-ofspie/10703/1070326/From-Clear-to-DKIST–advancing-solar-MCAO-from-16/10.1117/12.2313787.full?SSO=1.Google Scholar
  26. 26.
    T. V. Ramachandra, D. M. Mahapatra, M. Boominathan, et al., “Environmental Impact Assessment of the National Large Solar Telescope Project and Its Ecological Impact in Merak Area,” in CES Tech. Rep. XXM. 2011. http://wgbis.ces.iisc.ernet.in/energy/water/paper/TR123/environmental impact assessment.pdf.Google Scholar
  27. 27.
    J. Chae, H.-M. Park, K. Ahn, et al., “Fast Imaging Solar Spectrograph of the 1.6 Meter New Solar Telescope at Big Bear Solar Observatory,” Solar Phys. 288 (1), 1–22 (2013). https://link.springer.com/article/10.1007/s11207-012-0147-x.ADSCrossRefGoogle Scholar
  28. 28.
    W. Cao, P. R. Goode, K. Ahn, et al., “NIRIS -the Second Generation Near-Infrared Imaging Spectropolarimeter for the 1.6 Meter New Solar Telescope,” in Proc. of the ASP Conference Ser. Vol. 463 (2012). http://www.bbso.njit.edu/nst publ/Cao NIRIS 2012.pdf.Google Scholar
  29. 29.
    W. Cao, N. Gorceix, R. Coulter, et al., “Nasmyth Focus Instrumentation of the New Solar Telescope at Big Bear Solar Observatory,” Proc. SPIE 7735, 77355V (2010). https://pdfs.semanticscholar.org/84ab/1490d5e81016ec3075b3e8b4d60a2726df41.pdf.Google Scholar
  30. 30.
    GREGOR Fabry-Pérot Interferometer (GFPI). http://www.leibniz-kis.de/de/observatorien/gregor/scientificinstruments.Google Scholar
  31. 31.
    M. Collados, L. Lopez, E. Paez, et al., “GRIS: The GREGOR Infrared Spectrograph,” Astron. Nachr. 333 (9), 872–879 (2012). https://onlinelibrary.wiley.com/doi/epdf/10.1002/asna.201211738.ADSCrossRefGoogle Scholar
  32. 32.
    K. Daniel, Inouye Solar Telescope. Instrumentation Suite and Configuration. https://dkist.nso.edu/CSP/instruments.Google Scholar
  33. 33.
    F. Wöger, Visible Broadband Imager (VBI). https://dkist.nso.edu/sites/atst.nso.edu/files/science/CSP/vbi171107.pdf.Google Scholar
  34. 34.
    O. Von der Lühe and W. Schmidt, Visible Tunable Filter (VTF). https://dkist.nso.edu/sites/atst.nso.edu/files/science/CSP/vtf171106.pdf.Google Scholar
  35. 35.
    H. Lin, Diffraction Limited Near Infrared Spectropolarimeter (DL-NIRSP). https://dkist.nso.edu/sites/atst.nso.edu/files/science/CSP/dlnirsp171107.pdf.Google Scholar
  36. 36.
    J. Kuhn and A. Fehlmann, Cryogenic Near Infra-Red Spectro-Polarimeter (Cryo-NIRSP). https://dkist.nso.edu/sites/atst.nso.edu/files/science/CSP/cryonirsp171107.pdf.Google Scholar
  37. 37.
    K. Daniel, Inouye Solar Telescope. High Level Controls/Software. https://dkist.nso.edu/controls.Google Scholar
  38. 38.
    K. Daniel, Inouye Solar Telescope. Telescope Assembly. https://dkist.nso.edu/tel.Google Scholar
  39. 39.
    M. Warner, T. R. Rimmele, V. M. Pillet, et al., “Construction Update of the Daniel K. Inouye Solar Telescope Project,” Proc. SPIE 10700, 107000V (2018). https://www.spiedigitallibrary.org/conferenceproceedings-of-spie/10700/107000V/Construction-update-of-the-Daniel-K-Inouye-Solar-Telescope-project/10.1117/12.2314212.full? SSO=1.Google Scholar
  40. 40.
    DELTA TAU. POWER PMAC -Motion Control Innovation. Controlling the Advanced Technology Solar Telescope. http://www.deltatau.com/Common/support/pressreleases/ATSTforWeb.pdf.Google Scholar
  41. 41.
    I. Ermolli, F. Bettonvil, G. Cauzzi, et al., “Data Handling and Control for the European Solar Telescope,” Proc. SPIE 77400, 77400G (2012). DOI: 10.1117/12.856938. https://www.researchgate.net/publication/229024484 Data handling and control for the European Solar Telescope.Google Scholar
  42. 42.
    K. Daniel, Inouye Solar Telescope. Observatory Control System. https://dkist.nso.edu/controls/OCS.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations