Skip to main content
Log in

Modern Ground-Based Solar Telescopes and Requirements for Their Automation Systems

  • Automation Systems in Scientific Research and Industry
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

This paper systematizes and generalizes data on the specific features, operation modes, and technical characteristics of world-class ground-based solar telescopes in order to obtain information required to develop and design an automated control systems for the large solar telescope included in the National Heliogeophysical Complex of the Russian Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Kovadlo, A. A. Lubkov, A. N. Bevzov, et al., “Automation System for the Large Solar Vacuum Telescope,” Avtometriya 52 (2), 97–106 (2016) [Optoelectron., Instrum. Data Process. 52 (2), 187–195 (2016)].

    Google Scholar 

  2. Hubble Space Telescope. https://en.wikipedia.org/wiki/Hubble Space Telescope.

  3. McMath-Pierce Solar Telescope. https://en.wikipedia.org/wiki/McMath%E2%80%93Pierce solar telescope.

  4. Low-Cost Solar Adaptive Optics. https://web.archive.org/web/20160221131712, http://www.noao.edu/noao/staff/keller/irao.

  5. The GST (Goode Solar Telecope). BBSO Big Bear Solar Observatory. http://www.bbso.njit.edu.

  6. Zh. Li, Ch. Fang, Y. Guo, et al., “High-Resolution Observations of a Large Fan-Shaped Surge,” Astrophys. J. 826 (2), 217L (2016). http://iopscience.iop.org/article/10.3847/0004-637X/826/2/217/pdf.

    Article  ADS  Google Scholar 

  7. “A&A Special Issue: GREGOR First Results,” Astron. & Astrophys. 596, 1–2 (2016). https://www.aanda.org/images/stories/PressRelease/2016/gregor/prGREGOR.pdf.

  8. R. Schlichenmaier, O. von der Lühe, S. Hoch, et al., “Active Region Fine Structure Observed at 0.0800 Resolution,” Astron. & Astrophys. N AA 2016 28561 (2018). https://arxiv.org/pdf/1607.07094.pdf.

    Google Scholar 

  9. C. Denker, P. R. Goode, D. Ren, et al., “Progress on the 1.6-Meter New Solar Telescope at Big Bear Solar Observatory,” Proc. SPIE 6267, 62670A (2006). http://www.bbso.njit.edu/pgoode/txt/txt/denker1303.pdf.

    Google Scholar 

  10. Observatories. GREGOR. Telescope and Optics. http://www.leibniz-kis.de/en/observatories/gregor/telescopeand-optics.

  11. C. Denker, O. von der Lühe, A. Feller, et al., “A Retrospective of the GREGOR Solar Telescope in Scientific Literature,” Astron. Nachr. 333 (9), 810–815 (2012). http://www2.mps.mpg.de/dokumente/publikationen/solanki/j361.pdf.

    Article  ADS  Google Scholar 

  12. K. Daniel, Inouye Solar Telescope. M1 Assembly. https://dkist.nso.edu/tel/m1a.

  13. K. Daniel, Top End Optical Assembly. https://dkist.nso.edu/tel/teoa.

  14. National Large Solar Telescope. Indian Institute of Astrophysics Detailed Concept Design Study Rep. (2009). ftp://ftp.iiap.res.in/rangaraj/DPR ver4.7.pdf.

  15. S. V. Olemskoi, Implementing the Project of the National Heliogeophysical Complex of the Russian Academy of Sciences (Novosibirsk, 2017). http://www.sbras.ru/files/files/prezidium20171221/1 olemskoy.pdf.

    Google Scholar 

  16. European Solar Telescope Conceptual Design Study Rep. (2011). RPT-EST-0001, Is. 2.A. http://istar.ll.iac.es/files/58cef4ec1579d9e39754c76d5.pdf.

  17. S. Shumko, N. Gorceix, S. Choia, et al., “AO-308: The High-Order Adaptive Optics System at Big Bear Solar Observatory,” Proc. SPIE 9148, 914835 (2014). https://www.researchgate.net/profile/Sergey Shumko/publication/269320473 AO-308 The high-order adaptive optics system at Big Bear Solar Observatory/links/54c158330cf25b4b80720f08/AO-308-The-high-order-adaptive-optics-system-at-Big-Bear-Solar-Observatory.pdf.

    Article  Google Scholar 

  18. W. Schmidt, O. von der Luhe, R. Volkmer, et al., “The 1.5 Meter Solar Telescope GREGOR,” Astron. Nachr. 333 (9), 796–809 (2012). http://www2.mps.mpg.de/dokumente/publikationen/solanki/j360.pdf.

    Article  ADS  Google Scholar 

  19. 1600-Actuator Deformable Mirror Prepped for Hawaii Solar telescope //Optics. org. 3 Aug., 2015. http://optics.org/news/6/7/44.

  20. Northrop Grumman Successfully Delivers Deformable Mirror for World’s Largest Solar Telescope. July, 2015. https://news.northropgrumman.com/news/releases/northrop-grumman-successfully-delivers-deformablemirror-for-world-s-largest-solar-telescope.

  21. L. Johnson, K. Cummings, M. Drobilek, et al., “Status of the DKIST Solar Adaptive Optics System,” in AO4ELT Conference Rep. Puerto de la Cruz, Tenerife, 28 June, 2017. http://www.iac.es/congreso/AO4ELT5/media/wednesday/ao4elt5 marino.pdf.

    Google Scholar 

  22. M. Demidov, “National Large Solar Telescope of Russia,” in Proc. of the 40th COSPAR Scientific Assembly. Moscow, Russia, 2–10 Aug., 2014. Vol. 40. Id. D2.3-44-14. http://adsabs.harvard.edu/abs/2014cosp...40E.681D.

    Google Scholar 

  23. “Developing the Pilot Project of a Large Solar Telescope with a Mirror Diameter of 3 m,” in Report on the Scientific Research and Scientific Organization Activity of the Institute of Solar-Terrestrial Physics of the Russian Academy of Sciences (ISTP RAS) in 2014 (ISTP RAS, Irkutsk, 2015). http: //ru.iszf.irk.ru/images/a/a2/%D0%9E%D1%82%D1%87%D0%B5%D1%82 %D0%98%D0%A1%D0%97%D0%A4 %D0%A1%D0%9E %D0 %A0%D0%90%D0%9D %D0%B7%D0%B0 2014.pdf.

  24. D. Soltau, T. Berkefeld, J. Sanchez Capuchino, et al., “Adaptive Optics and MCAO for the 4-m European Solar Telescope EST,” Proc. SPIE. 7736, 77360U (2010). https://www.spiedigitallibrary.org/conference-proceedingsof-spie/7736/77360U/Adaptive-optics-and-MCAO-for-the-4-m-European-Solar/10.1117/12.856851.full.

    Article  Google Scholar 

  25. D. Schmidt, J. Marino, N. Gorceix, et al., “From Clear to DKIST: Advancing Solar MCAO from 1.6 to 4 Meters,” Proc. SPIE 10703, 1070326 (2018). https://www.spiedigitallibrary.org/conference-proceedings-ofspie/10703/1070326/From-Clear-to-DKIST–advancing-solar-MCAO-from-16/10.1117/12.2313787.full?SSO=1.

    Google Scholar 

  26. T. V. Ramachandra, D. M. Mahapatra, M. Boominathan, et al., “Environmental Impact Assessment of the National Large Solar Telescope Project and Its Ecological Impact in Merak Area,” in CES Tech. Rep. XXM. 2011. http://wgbis.ces.iisc.ernet.in/energy/water/paper/TR123/environmental impact assessment.pdf.

    Google Scholar 

  27. J. Chae, H.-M. Park, K. Ahn, et al., “Fast Imaging Solar Spectrograph of the 1.6 Meter New Solar Telescope at Big Bear Solar Observatory,” Solar Phys. 288 (1), 1–22 (2013). https://link.springer.com/article/10.1007/s11207-012-0147-x.

    Article  ADS  Google Scholar 

  28. W. Cao, P. R. Goode, K. Ahn, et al., “NIRIS -the Second Generation Near-Infrared Imaging Spectropolarimeter for the 1.6 Meter New Solar Telescope,” in Proc. of the ASP Conference Ser. Vol. 463 (2012). http://www.bbso.njit.edu/nst publ/Cao NIRIS 2012.pdf.

    Google Scholar 

  29. W. Cao, N. Gorceix, R. Coulter, et al., “Nasmyth Focus Instrumentation of the New Solar Telescope at Big Bear Solar Observatory,” Proc. SPIE 7735, 77355V (2010). https://pdfs.semanticscholar.org/84ab/1490d5e81016ec3075b3e8b4d60a2726df41.pdf.

    Google Scholar 

  30. GREGOR Fabry-Pérot Interferometer (GFPI). http://www.leibniz-kis.de/de/observatorien/gregor/scientificinstruments.

  31. M. Collados, L. Lopez, E. Paez, et al., “GRIS: The GREGOR Infrared Spectrograph,” Astron. Nachr. 333 (9), 872–879 (2012). https://onlinelibrary.wiley.com/doi/epdf/10.1002/asna.201211738.

    Article  ADS  Google Scholar 

  32. K. Daniel, Inouye Solar Telescope. Instrumentation Suite and Configuration. https://dkist.nso.edu/CSP/instruments.

  33. F. Wöger, Visible Broadband Imager (VBI). https://dkist.nso.edu/sites/atst.nso.edu/files/science/CSP/vbi171107.pdf.

  34. O. Von der Lühe and W. Schmidt, Visible Tunable Filter (VTF). https://dkist.nso.edu/sites/atst.nso.edu/files/science/CSP/vtf171106.pdf.

  35. H. Lin, Diffraction Limited Near Infrared Spectropolarimeter (DL-NIRSP). https://dkist.nso.edu/sites/atst.nso.edu/files/science/CSP/dlnirsp171107.pdf.

  36. J. Kuhn and A. Fehlmann, Cryogenic Near Infra-Red Spectro-Polarimeter (Cryo-NIRSP). https://dkist.nso.edu/sites/atst.nso.edu/files/science/CSP/cryonirsp171107.pdf.

  37. K. Daniel, Inouye Solar Telescope. High Level Controls/Software. https://dkist.nso.edu/controls.

  38. K. Daniel, Inouye Solar Telescope. Telescope Assembly. https://dkist.nso.edu/tel.

  39. M. Warner, T. R. Rimmele, V. M. Pillet, et al., “Construction Update of the Daniel K. Inouye Solar Telescope Project,” Proc. SPIE 10700, 107000V (2018). https://www.spiedigitallibrary.org/conferenceproceedings-of-spie/10700/107000V/Construction-update-of-the-Daniel-K-Inouye-Solar-Telescope-project/10.1117/12.2314212.full? SSO=1.

    Google Scholar 

  40. DELTA TAU. POWER PMAC -Motion Control Innovation. Controlling the Advanced Technology Solar Telescope. http://www.deltatau.com/Common/support/pressreleases/ATSTforWeb.pdf.

  41. I. Ermolli, F. Bettonvil, G. Cauzzi, et al., “Data Handling and Control for the European Solar Telescope,” Proc. SPIE 77400, 77400G (2012). DOI: 10.1117/12.856938. https://www.researchgate.net/publication/229024484 Data handling and control for the European Solar Telescope.

    Google Scholar 

  42. K. Daniel, Inouye Solar Telescope. Observatory Control System. https://dkist.nso.edu/controls/OCS.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lubkov.

Additional information

Russian Text © A.A. Lubkov, Yu.A. Popov, 2019, published in Avtometriya, 2019, Vol. 55, No. 1, pp. 111–128.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubkov, A.A., Popov, Y.A. Modern Ground-Based Solar Telescopes and Requirements for Their Automation Systems. Optoelectron.Instrument.Proc. 55, 93–106 (2019). https://doi.org/10.3103/S875669901901014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S875669901901014X

Keywords

Navigation