Advertisement

Terahertz Imager Based on a THz-to-IR Converter

  • A. G. PaulishEmail author
  • B. N. Novgorodov
  • S. V. Khryashchev
  • S. A. Kuznetsov
Analysis and Synthesis of Signals and Images
  • 8 Downloads

Abstract

A new terahertz (THz) imager based on THz-to-IR conversion has been proposed and studied. The THz-to-IR converter consists of an ultra-thin resonant THz absorber (meta-absorber) whose backside is coated with an emission layer with an emission factor close to unity. The absorption of THz radiation leads to converter heating, which is recorded by an IR camera from the emission layer side. The small thickness of the converter (more than 50 times smaller than the working wavelength of THz radiation) determines its low heat capacity, resulting in an increase in the sensitivity and operating speed of the imager. Optimization of the optics of the THz imager, making cuts in the converter structure to reduce the blooming and increase the response, and the IR image processing method increasing the signal-to-noise ratio, provided the sensitivity of the THz imager similar to the sensitivity of thermal detectors in the 8–12 μm IR range.

Keywords

terahertz radiation terahertz image detectors THz-to-IR conversion image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Klimov, V. Shumsky, and V. Kubarev, “Terahertz Sensitivity of Pb1−xSnxTe(In),” Ferroelectrics 347 (1), 111–119 (2007).CrossRefGoogle Scholar
  2. 2.
    D. R. Khokhlov, I. I. Ivanchik, S. N. Raines, et al., “Performance and Spectral Response of Pb1xSnxTe(In) Far-Infrared Photodetectors,” Appl. Phys. Lett. 76 (20), 2835–2837 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    F. F. Sizov, M. V. Apatskaya, Zh. F. Gumenyuk-Sychevskaya, et al., “HgCdTe Multi-Element Terahertz Detectors,” Prikl. Fiz., No. 2, 61–66 (2011).Google Scholar
  4. 4.
    E. S. Zhukova, B. P. Gorshunov, V. A. Yur’ev, et al., “Absorption of Terahertz Radiation in Ge/Si(001) Heterostructures with Quantum Dots,” Pis’ma Zh. Eksp. Teor. Fiz., 92 (12), 887–883 (2010) [JETP Lett. 92 (12), 793–798 (2010)].Google Scholar
  5. 5.
    T. W. Crowe, W. L. Bishop, D. W. Porterfield, et al., “Opening the Terahertz Window with Integrated Diode Circuits,” IEEE J. Solid.-St. Circ. 40 (10), 2104–2110 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    V. G. Bozhkov, “Semiconductor Detector, Mixer, and Frequency Multipliers for the Terahertz Band,” Radiophys. Quantum. El. 46 (8–9), 631–656 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    H. Matsuo, H. Nagata, Y. Mori, and S. Arioshi, “Performance of SIS Photon Detectors for Superconductive Imaging Submillimeter–Wave Camera (SISCAM),” Proc. SPIE 6275, 627504 (2006).Google Scholar
  8. 8.
    A. Semenov, G. N. Gol’tsman, and R. Sobolewski,. “Hot-Electron Effect in Semiconductors and its Application for Radiation Sensors,” LLE Rev. 87, 134–143 (2001).Google Scholar
  9. 9.
    M. Yao, J. Li, D. C. Liu, et al., “Development of a 0.85 THz Nb-AlN-NbN Superconductor-Insulator-Superconductor Mixer,” in Proc. of the 10th Global Symposium on Millimeter-Waves (GSMM 2017), Hong Kong, China, 24–26 May, 2017. P. 117–119.Google Scholar
  10. 10.
    M. A. Dem’yanenko, D. G. Esaev, B. A. Knyazev, et al., “Imaging with a 90 frames/s Microbolometer Focal Plane Array and High-Power Terahertz Free Electron Laser,” Appl. Phys. Lett. 92 (13), 131116 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    Pyrocam TM IV. Ophir-Spiricon, LLC. https://www.ophiropt.com/laser-measurement/beam-profilers/products/Beam-Profiling/Camera-Profiling-with-BeamGage/Pyrocam-IV.Google Scholar
  12. 12.
    Terahertz cameras Terasense Group, Inc. http://terasense.com/products/sub-thz-imaging-cameras.Google Scholar
  13. 13.
    D. H. Martin, P. L. Richards, and G. R. Wilkinson, Spectroscopic Techniques for Far Infra-red, Submillimetre and Millimetre Waves (Elsevier, 1967; Mir, Moscow, 1970).Google Scholar
  14. 14.
    Thermal Image Plates. Macken Instruments Incorporated. http://www.macken.com.Google Scholar
  15. 15.
    W. J. Padilla and X. Liu, “Perfect Electromagnetic Absorbers from Microwave to Optical,” Opt. Design & Eng. SPIE Newsroom. 2010. http://spie.org/newsroom/3137-perfect-electromagnetic-absorbers-from-microwaveto-optical ArticleID=x42025.CrossRefGoogle Scholar
  16. 16.
    B. A. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley & Sons Inc., New York, 2000).CrossRefGoogle Scholar
  17. 17.
    C. A. Kuznetsov, A. N. Gentselev, and C. H. Baev,“Implementation of High-Pass Subterahertz Filters using High-Aspect-Ratio Polymeric Structures,” 53 (1), 108–116 (2017) [Avtometriya Optoelecton., Instrum. Data Process. 53 (1), 88–95 (2017)].Google Scholar
  18. 18.
    S. A. Kuznetsov, A. G. Paulish, A. V. Gelfand, et al., “Bolometric THz-to-IR Converter for Terahertz Imaging,” Appl. Phys. Lett. 99 (2), 023501 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    S. A. Kuznetsov, A. G. Paulish, A. V. Gelfand, et al., “Matrix Structure of Metamaterial Absorbers for Multispectral Terahertz Imaging,” Progress In Electromagnetics Research 122, 93–103 (2012).CrossRefGoogle Scholar
  20. 20.
    A. G. Paulish, P. S. Zagubisalo, S. A. Kuznetsov, et al., “Modeling Thermophysical Processes in a Subterahertz Imager Based on a Thin-Film Metamaterial Converter,” Radiophydics and Quantum Electronics 56 (1), 20–35 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. G. Paulish
    • 1
    • 2
    Email author
  • B. N. Novgorodov
    • 1
  • S. V. Khryashchev
    • 1
  • S. A. Kuznetsov
    • 1
    • 3
  1. 1.Technological Design Institute of Applied Microelectronics, Novosibirsk Department of the Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations