Calculation of Light Scattering on a Bragg Grating by Recursion of Transfer Matrices on a Nonuniform Grid

  • N. I. Gorbenko
  • V. P. Il’inEmail author
  • L. L. Frumin
Optical Information Technologies


The direct problem of light scattering for a fiber optic Bragg grating is considered. The formulation and solution of the problem based on the transfer-matrix method are discussed. A modification of the method is proposed which reduces it to a computationally convenient universal recursive algorithm similar to the Thomas algorithm. Using the finite volume method in the coupled-mode approximation, the elements of transfer matrices were calculated with local third-order accuracy in coordinate on a nonuniform computational grid. Numerical calculations for the direct scattering problem for a Bragg grating with apodization and nonlinear chirp were performed using the recursive algorithm. Numerical simulations confirmed the significant increase in the accuracy of calculations when solving the scattering problem on a nonuniform grid.


fiber Bragg grating scattering problem transfer-matrix method recursive algorithm nonuniform grid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. N. Kul’chin, Distributed Fiber Optic Systems (Fizmatlit, Moscow, 2004) [in Russian].Google Scholar
  2. 2.
    R. Kashyap, Fiber Bragg Gratings (Academic Press, New York, 1999).Google Scholar
  3. 3.
    S. A. Vasil’ev, O. I. Medvedkov, I. G. Korolev, et al., “Fiber Gratings and Their Applications,” Kvant. Elektron. 35 (12), 1085–1103 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    L. F. Mollenauer and J. Gordon, Solitons in Optical Fiber (Academic Press, New York, 2006).Google Scholar
  5. 5.
    S. K. Turitsyn, J. E. Prilepsky, S. T. Le, et al., “Nonlinear Fourier Transform for Optical Data Processing and Transmission: Advances and Perspectives,” Optica 4 (3), 307–322 (2017).CrossRefGoogle Scholar
  6. 6.
    J. Canning, “Fiber Gratings and Devices for Sensors and Lasers,” Lasers and Photon. Rev. 2 (4), 275–289 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    S. A. Babin, A. A. Vlasov, S. I. Kablukov, and I. S. Shelemba, “Sensor System Based on Fiber-Optic Bragg Gratings,” Vestn. NGU. Ser. Fizika, 2 (3), 54–57 (2007).Google Scholar
  8. 8.
    D. Tosi, “Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications,” Sensors 18 (7), 2147–2178 (2018).CrossRefGoogle Scholar
  9. 9.
    O. V. Ivanov, O. V. Nikitov, and Yu. V. Gulyaev, “Cladding Modes of Optical Fibers: Properties and Applications,” Uspekhi Fiz. Nauk 176 (2), 175–202 (2006).CrossRefGoogle Scholar
  10. 10.
    M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1959; Nauka, Moscow, 1977) [in Russian].zbMATHGoogle Scholar
  11. 11.
    S. Burtsev, R. Camassa, and I. Timofeyev, “Numerical Algorithms for the Direct Spectral Transform with Applications to Nonlinear Schrödinger Type Systems,” J. Comp. Phys. 147 (1), 166–186 (1998).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    L. M. Brekhovskikh, Waves in Layered Media (Nauka, Moscow, 1973) [in Russian].Google Scholar
  13. 13.
    R. Pernas-Salomon and R. Perez-Alvarez, “Sturm-Liouville Matrix Equation for the Study of Electromagnetic-Waves Propagation in Layered Anisotropic Media,” Progress In Electromagnetics Research M 40, 79–90 (2014).CrossRefGoogle Scholar
  14. 14.
    H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. Jn. 48 (9), 2909–2947 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    V. E. Zakharov and A. B. Shabbat, “Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media,” Zh. Eksp. Teor. Fiz. 61 (1), 118–134 (1971).MathSciNetGoogle Scholar
  16. 16.
    L. D. Landau and E. M. Lifshits, Theoretical Physics Vol. VIII. Electrodynamics of Continuous Media (Nauka, Moscow, 1982) [in Russian].Google Scholar
  17. 17.
    W. C. Huffman and V. S. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, New York, 2003).CrossRefzbMATHGoogle Scholar
  18. 18.
    E. F. Pen, M. Yu. Rodionov, and P. A. Chubakov, “Spectral Properties of a Cascade of Holographic Reflection Gratings Separated by a Uniform Layer,” Avtometriya 53 (1), 73–82 (2017) [Optoelecton., Instrum. Data Process. 53 (1), 59–67 (2017)].Google Scholar
  19. 19.
    V. P. Il’in, Finite Difference and Finite Volume Methods for Elliptic Equations (Nauka, Novosibirsk, 2001) [in Russian].Google Scholar
  20. 20.
    L. L. Frumin, O. V. Belai, E. V. Podivilov, and D. A. Shapiro, “Efficient Numerical Method for Solving the Direct Zakharov–Shabat Scattering Problem,” JOSA B 32 (2), 290–295 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, “Efficient Numerical Method for Solving the Direct Zakharov–Shabat Scattering Problem,” JOSA B 24 (7), 1451–1457 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    V. P. Il’in and Yu. I. Kuznetsov, Three-Diagonal Matrices and Their Applications (Nauka, Moscow, 1985) [in Russian].Google Scholar
  23. 23.
    E. V. Podivilov, D. A. Shapiro, and D. A. Trubitsyn, “Exactly Solvable Profiles of Quasi-Rectangular Bragg Filter with Dispersion Compensation,” J. Opt. A: Pure and Appl. Opt. 8 (9), 788–795 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    O. V. Belai, E. V. Podivilov, L. L. Frumin, and D. A. Shapiro, “Stability of the Numerical Reconstruction of Fiber Bragg Gratings,” Opt. Spektr. 105 (1), 114–121 (2008).Google Scholar
  25. 25.
    O. V. Belai, E. V. Podivilov, L. L. Frumin, and D. A. Shapiro, “Inverse Scattering Problem for theWave Equation of a One-Dimensional Inhomogeneous Medium,” Avtometriya 45 (6), 69–77 (2009) [Optoelecton., Instrum. Data Process. 45 (6), 546–553 (2009)].Google Scholar
  26. 26.
    L. G. Parratt, “Surface studies of solids by total reflection of X-rays,” Phys. Rev. 95 (2), 359–369 (1954).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • N. I. Gorbenko
    • 1
    • 2
  • V. P. Il’in
    • 1
    • 2
    Email author
  • L. L. Frumin
    • 2
    • 3
  1. 1.Institute of Computational Mathematics and Mathematical Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations