Skip to main content
Log in

Calculation of Light Scattering on a Bragg Grating by Recursion of Transfer Matrices on a Nonuniform Grid

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The direct problem of light scattering for a fiber optic Bragg grating is considered. The formulation and solution of the problem based on the transfer-matrix method are discussed. A modification of the method is proposed which reduces it to a computationally convenient universal recursive algorithm similar to the Thomas algorithm. Using the finite volume method in the coupled-mode approximation, the elements of transfer matrices were calculated with local third-order accuracy in coordinate on a nonuniform computational grid. Numerical calculations for the direct scattering problem for a Bragg grating with apodization and nonlinear chirp were performed using the recursive algorithm. Numerical simulations confirmed the significant increase in the accuracy of calculations when solving the scattering problem on a nonuniform grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Kul’chin, Distributed Fiber Optic Systems (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  2. R. Kashyap, Fiber Bragg Gratings (Academic Press, New York, 1999).

    Google Scholar 

  3. S. A. Vasil’ev, O. I. Medvedkov, I. G. Korolev, et al., “Fiber Gratings and Their Applications,” Kvant. Elektron. 35 (12), 1085–1103 (2005).

    Article  ADS  Google Scholar 

  4. L. F. Mollenauer and J. Gordon, Solitons in Optical Fiber (Academic Press, New York, 2006).

    Google Scholar 

  5. S. K. Turitsyn, J. E. Prilepsky, S. T. Le, et al., “Nonlinear Fourier Transform for Optical Data Processing and Transmission: Advances and Perspectives,” Optica 4 (3), 307–322 (2017).

    Article  Google Scholar 

  6. J. Canning, “Fiber Gratings and Devices for Sensors and Lasers,” Lasers and Photon. Rev. 2 (4), 275–289 (2008).

    Article  ADS  Google Scholar 

  7. S. A. Babin, A. A. Vlasov, S. I. Kablukov, and I. S. Shelemba, “Sensor System Based on Fiber-Optic Bragg Gratings,” Vestn. NGU. Ser. Fizika, 2 (3), 54–57 (2007).

    Google Scholar 

  8. D. Tosi, “Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications,” Sensors 18 (7), 2147–2178 (2018).

    Article  Google Scholar 

  9. O. V. Ivanov, O. V. Nikitov, and Yu. V. Gulyaev, “Cladding Modes of Optical Fibers: Properties and Applications,” Uspekhi Fiz. Nauk 176 (2), 175–202 (2006).

    Article  Google Scholar 

  10. M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1959; Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  11. S. Burtsev, R. Camassa, and I. Timofeyev, “Numerical Algorithms for the Direct Spectral Transform with Applications to Nonlinear Schrödinger Type Systems,” J. Comp. Phys. 147 (1), 166–186 (1998).

    Article  ADS  MATH  Google Scholar 

  12. L. M. Brekhovskikh, Waves in Layered Media (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  13. R. Pernas-Salomon and R. Perez-Alvarez, “Sturm-Liouville Matrix Equation for the Study of Electromagnetic-Waves Propagation in Layered Anisotropic Media,” Progress In Electromagnetics Research M 40, 79–90 (2014).

    Article  Google Scholar 

  14. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. Jn. 48 (9), 2909–2947 (1969).

    Article  ADS  Google Scholar 

  15. V. E. Zakharov and A. B. Shabbat, “Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media,” Zh. Eksp. Teor. Fiz. 61 (1), 118–134 (1971).

    MathSciNet  Google Scholar 

  16. L. D. Landau and E. M. Lifshits, Theoretical Physics Vol. VIII. Electrodynamics of Continuous Media (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  17. W. C. Huffman and V. S. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, New York, 2003).

    Book  MATH  Google Scholar 

  18. E. F. Pen, M. Yu. Rodionov, and P. A. Chubakov, “Spectral Properties of a Cascade of Holographic Reflection Gratings Separated by a Uniform Layer,” Avtometriya 53 (1), 73–82 (2017) [Optoelecton., Instrum. Data Process. 53 (1), 59–67 (2017)].

    Google Scholar 

  19. V. P. Il’in, Finite Difference and Finite Volume Methods for Elliptic Equations (Nauka, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  20. L. L. Frumin, O. V. Belai, E. V. Podivilov, and D. A. Shapiro, “Efficient Numerical Method for Solving the Direct Zakharov–Shabat Scattering Problem,” JOSA B 32 (2), 290–295 (2015).

    Article  ADS  Google Scholar 

  21. O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, “Efficient Numerical Method for Solving the Direct Zakharov–Shabat Scattering Problem,” JOSA B 24 (7), 1451–1457 (2007).

    Article  ADS  Google Scholar 

  22. V. P. Il’in and Yu. I. Kuznetsov, Three-Diagonal Matrices and Their Applications (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  23. E. V. Podivilov, D. A. Shapiro, and D. A. Trubitsyn, “Exactly Solvable Profiles of Quasi-Rectangular Bragg Filter with Dispersion Compensation,” J. Opt. A: Pure and Appl. Opt. 8 (9), 788–795 (2006).

    Article  ADS  Google Scholar 

  24. O. V. Belai, E. V. Podivilov, L. L. Frumin, and D. A. Shapiro, “Stability of the Numerical Reconstruction of Fiber Bragg Gratings,” Opt. Spektr. 105 (1), 114–121 (2008).

    Google Scholar 

  25. O. V. Belai, E. V. Podivilov, L. L. Frumin, and D. A. Shapiro, “Inverse Scattering Problem for theWave Equation of a One-Dimensional Inhomogeneous Medium,” Avtometriya 45 (6), 69–77 (2009) [Optoelecton., Instrum. Data Process. 45 (6), 546–553 (2009)].

    Google Scholar 

  26. L. G. Parratt, “Surface studies of solids by total reflection of X-rays,” Phys. Rev. 95 (2), 359–369 (1954).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Il’in.

Additional information

Russian Text © N.I. Gorbenko, V.P. Il’in, L.L. Frumin, 2019, published in Avtometriya, 2019, Vol. 55, No. 1, pp. 40–50.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbenko, N.I., Il’in, V.P. & Frumin, L.L. Calculation of Light Scattering on a Bragg Grating by Recursion of Transfer Matrices on a Nonuniform Grid. Optoelectron.Instrument.Proc. 55, 32–40 (2019). https://doi.org/10.3103/S8756699019010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699019010060

Keywords

Navigation