Investigation of Characteristics of Thick Diffraction Gratings by the Method of Laser Heterodyne Tomography

  • P. E. TverdokhlebEmail author
  • Yu. A. Shchepetkin
  • I. Sh. Steinberg
Optical Information Technologies


A procedure of layer-by-layer investigations of characteristics of thick amplitude-phase gratings by the method of laser heterodyne tomography is presented. The parameters of a thick grating nonlinearly recorded on an additively colored crystal of calcium fluoride (CaF2 : Na) are estimated. The main theoretical postulates of laser heterodyne tomography are experimentally validated.


Laser heterodyne tomography amplitude-phase diffraction grating collinear heterodyne photodetector acousto-optical scanning of the grating diffraction efficiency amplitude and phase components of the grating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Alekseev-Popov and S. A. Gevelyuk, Determination of the Contributions of the Amplitude and Phase Modulations to the Diffraction Efficiency of Volume Holograms. Optical Holoraphy (Nauka, Leningrad, 1983, pp. 14–24) [in Russian].Google Scholar
  2. 2.
    L. Carreto, R. F. Madrigal, A. Fimia, et al., “Study of Angular Responses of Mixed Amplitude–Phase Holographic Gratings: Shitted Borrmann Effect,” Opt. Lett. 26 (11), 786–788 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    H. Kogelnik, “Coupled Wave Theory of Thick Hologram Gratings,” The Bell Syst. Techn. J. 48 (9), 2909–2947 (1969).ADSCrossRefGoogle Scholar
  4. 4.
    A. S. Shcheulin, A. V. Veniaminov, Yu. L. Korzinin, et al., “Highly Stable Holographic Medium Based on CaF2:Na Crystals with Colloid Centers of Coloring. III. Hologram Properties,” Optika Spektroskopiya 103 (4), 672–676 (2007).Google Scholar
  5. 5.
    A. V. Veniaminov, A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Profile of a Volume Hologram in CaF2 Crystal with Color Centers as Determined Using Confocal Scanning Microscopy,” J. Opt. Soc. Am. B 29 (3), 335–339 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, et al., “Transformation of Color Centers in Recording a Hologram in an Additively Colored CaF2:Na Crystal,” Optika Spektroskopiya 116 (3), 408–412 (2014).CrossRefGoogle Scholar
  7. 7.
    P. E. Tverdokhleb and Yu. A. Shchepetkin, “A Laser Doppler Tomography Method for Investigating Volume Recording Media,” Avtometriya 44 (6), 76–88 (2008) [Optoelectron., Instrum. Data Process. 44 (6), 537–545 (2008)].Google Scholar
  8. 8.
    Yu. A. Shchepetkin, “Method of Optical Tomography of Light-Sensitive Materials,” Patent No. 2377539 RF, Publ. 27.12.2009, Bul. No. 36.Google Scholar
  9. 9.
    Three-Dimensional Laser Modification of Volume Light-Sensitive Materials, Ed. by P. E. Tverdokhleb (Izd. SO RAN, Novosibirsk, 2012) [in Russian].Google Scholar
  10. 10.
    Yu. N. Dubnishchev and B. S. Rinkevichyus, Methods of Laser Doppler Anemometry (Nauka, Moscow, 1982) [in Russian].Google Scholar
  11. 11.
    P. E. Tverdokhleb and Yu. A. Shchepetkin, “Methods of Optical Tomography for Studying the Amplitude and Phase Components of a Volume Holographic Grating,” Avtometriya 49 (1), 68–79 (2013) [Optoelectron., Instrum. Data Process. 49 (1), 57–66 (2013)].Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • P. E. Tverdokhleb
    • 1
    Email author
  • Yu. A. Shchepetkin
    • 1
  • I. Sh. Steinberg
    • 1
  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations