Advertisement

Optical Hilbert Diagnostics of Hydrogen Jet Burning

  • Yu. N. DubnishchevEmail author
  • V. A. Arbuzov
  • V. V. Lukashov
  • K. A. Sharov
  • V. V. Lemanov
Optical Information Technologies
  • 15 Downloads

Abstract

Diffusion burning of a hydrogen jet is studied by methods of the Hilbert optics. A diagnostic system based on the batch-produced IAB–463M device is implemented, which includes a specially developed Hilbert filtration module coupled with a light source. The influence of local turbulent perturbations (puff or slug) arising in the tube forming the jet on the dynamic structure and flame evolution is revealed. This phenomenon can be used to control the space-time structure of the flame.

Keywords

optical diagnostics of flows jet flame burning control vortex structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Smits and T. Lim, Flow Visualization. Techniques and Examples (Imperial College Press, London, 2000).CrossRefGoogle Scholar
  2. 2.
    G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, Berlin–Heidelberg, 2001).CrossRefzbMATHGoogle Scholar
  3. 3.
    Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods of Flow Studies (Izd. Sib. Univ., Novosibirsk, 2003).Google Scholar
  4. 4.
    A. F. Belozerov, Optical Methods of Gas Flow Visualization (Izd. Kazan. Gos. Univ., Kazan, 2007).Google Scholar
  5. 5.
    V. A. Arbuzov, N. A. Dvornikov, Yu. N. Dubnishchev, et al., “Hilbert-Diagnostics of Vortex Rings Induced in Air by a Pressure Pulse on a Hole,” Intern. J. Spray Combustion Dynamics 8 (3), 197–204 (2016).CrossRefGoogle Scholar
  6. 6.
    Yu. N. Dubnishchev, V. V. Sotnikov, V. A. Arbuzov, et al., “Measurement of the Velocity of Hilbert-Visualized Phase Structures by the Method of Emulation of Two-Dimensional Spatial Filtering of their Images,” Avtometriya 52 (6), 87–95 (2016) [Optoelectron., Instrum. Data Process. 52 (6), 601–608 (2016)].Google Scholar
  7. 7.
    Yu. A. Litvinenko, “Stability of Subsonic Macro-and Microjets and Microjet Burning (Review),” Sib. Fiz. Zh. 12 (3), 83–99 (2017).Google Scholar
  8. 8.
    V. V. Lemanov, V. V. Lukashov, R. Kh. Abdrakhmanov, et al., “Regimes of Unstable Expansion and Diffusion Combustion of a Hydrocarbon Fuel Jet,” Fiz. Goreniya Vzryva 54 (3), 3–12 (2018) [Combust., Expl., Shock Waves 54 (3), 255–263 (2018)].Google Scholar
  9. 9.
    T. Mullin, “Transition to Turbulence in a Pipe: A Historical Perspective,” Annu. Rev. Fluid Mech. 42, 1–24 (2011).ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    V. V. Lemanov, V. V. Lukashov, and K. A. Sharov, “Dynamics of Circular Gas Jets under Conditions of Jet Source Instability,” in Abstracts of XXV All-Russia Workshop on Jet, Separated, and Unsteady Flows, September 11–14, 2018, St. Petersburg, pp. 155–157.Google Scholar
  11. 11.
    A. Hamins, J. C. Yang, and T. Kashiwagi, “An Experimental Investigation of the Pulsation Frequency of Flames,” Proc. of the Intern. Symp. on Combustion Institute 24 (1), 1695–1702 (1992).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • Yu. N. Dubnishchev
    • 1
    • 2
    Email author
  • V. A. Arbuzov
    • 1
    • 3
  • V. V. Lukashov
    • 1
  • K. A. Sharov
    • 1
  • V. V. Lemanov
    • 1
  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Technological Design Institute of Scientific Instrument Engineering, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations