Skip to main content
Log in

Quantization Noise of Multilevel Discrete Wavelet Transform Filters in Image Processing

  • Analysis and Synthesis of Signals and Images
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The effect of the quantization noise of the coefficients of discrete wavelet transform (DWT) filters on the image processing result is analyzed. A multilevel DWT method is proposed for determining the effective bit-width of DWT filter coefficients at which quantization noise has little effect on the image processing result. The dependence of the peak signal-to-noise ratio (PSNR) in DWT of images on the wavelet used, the effective bit-width of the coefficients, and the number of processing levels is revealed. Formulas are derived for determining the minimum bit-width of the coefficients that provide high quality of the processed image (PSNR ≥ 40 dB) depending on the wavelet used and the number of processing levels. Experimental modeling of a multilevel DWT image confirmed the results obtained. In the proposed method, all data are represented in fixed-point format, making possible its hardwareefficient implementation on modern devices (FPGA, ASIC, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Gonzalez and R. E. Woods, Digital Image Processing. Upper Saddle River (Prentice Hall, 2007).

    Google Scholar 

  2. A. Bovik, Handbook of Image and Video Processing (Academic Press, New Jersey, 2005).

    MATH  Google Scholar 

  3. F. U. Shih, Image Processing and Pattern Recognition: Fundamentals and Techniques (John Wiley & Sons, IEEE Press, New Jersey, 2010).

    Book  Google Scholar 

  4. Yu. E. Voskoboinikov, “Evaluation of Optimal Parameters of the Multiplicative Algorithm Wavelet Filtering of Images,” Avtometriya 53 (4), 112–119 (2017) [Optoelectron., Instrum. Data Process. 53 (4), 402–407 (2017)].

    Google Scholar 

  5. M. Vetterli, J. Kovacevic, and V. K. Goyal, Foundations of Signal Processing (Cambridge University Press, Cambridge, 2014).

    Book  Google Scholar 

  6. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, 1992).

    Book  MATH  Google Scholar 

  7. S. Mallat, A Wavelet Tour of Signal Process the Sparse Way. Burlington (Academic Press, Elsevier, 2009).

    MATH  Google Scholar 

  8. L. Tan and J. Jiang, Digital Signal Processing: Fundamentals and Applications (Elsevier, Academic Press, Amsterdam–Boston, 2013).

    Book  Google Scholar 

  9. D. G. Bailey, Design for Embedded Image Processing on FPGAs (John Wiley & Sons, IEEE Press, Singapore, 2011).

    Book  Google Scholar 

  10. Y. Liu and E. M.-K. Lai, “Design and Implementation of an RNS-Based 2-D DWT Processor,” IEEE Trans. Consum. Electron. 50 (1), 376–385 (2004).

    Article  Google Scholar 

  11. C.-C. Cheng, C.-T. Huang, C.-Y. Chen, et al., “On-Chip Memory Optimization Scheme for VLSI Implementation of Line-Based Two-Dimentional Discrete Wavelet Transform,” IEEE Trans. Circuits and Syst. for Video Technol. 17 (7), 814–822 (2007).

    Article  Google Scholar 

  12. P. K. Meher, B. K. Mohanty, and J. C. Patra, “Hardware-Efficient Systolic-Like Modular Design for Two-Dimensional Discrete Wavelet Transform,” IEEE Trans. Circuits and Syst. II: Express Briefs. 55 (2), 151–155 (2008).

    Article  Google Scholar 

  13. W. J. Laan, A. C. Jalba, and J. B. T. M. Roerdink, “Accelerating Wavelet Lifting on Graphics Hardware using CUDA,” IEEE Trans. Parallel and Distributed Syst. 22 (1), 132–146 (2011).

    Article  Google Scholar 

  14. A. Safari, C. V. Niras, and Y. Kong, “Power-Performance Enhancement of Two-Dimensional RNS-Based DWT Image Processor using Static Voltage Scaling,” Integration, the VLSI J. 53 (C), 145–156 (2016).

    Article  Google Scholar 

  15. D. Schlichthärle, Digital Filters: Basics and Design (Springer-Verlag, Berlin–Heidelberg, 2011).

    Book  MATH  Google Scholar 

  16. A. Mehrnia and A. N. Willson, “A Lower Bound for the Hardware Complexity of FIR Filters,” IEEE Circuits and Syst. Magazine 18 (1), 10–28 (2017).

    Article  Google Scholar 

  17. K. R. Rao and P. C. Yip, The Transform and Data Compression Handbook (CRC Press, Boca Raton, 2001).

    MATH  Google Scholar 

  18. A. Basso, D. Cavagnino, V. Pomponui, and A. Vernone, “Blind Watermarking of Color Images using Karhunen— Loève Transform Keying,” The Computer J. 54 (7), 1076–1090 (2011).

    Article  Google Scholar 

  19. N. K. Smolentsev, Fundamentals of the Theory of Wavelets. Wavelets in MATLAB (DMK Press, Moscow, 2005) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Nagornov.

Additional information

Original Russian Text © N.I. Chervyakov, P.A. Lyakhov, N.N. Nagornov, 2018, published in Avtometriya, 2018, Vol. 54, No. 6, pp. 96–106.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chervyakov, N.I., Lyakhov, P.A. & Nagornov, N.N. Quantization Noise of Multilevel Discrete Wavelet Transform Filters in Image Processing. Optoelectron.Instrument.Proc. 54, 608–616 (2018). https://doi.org/10.3103/S8756699018060092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699018060092

Keywords

Navigation