Goodness-of-Fit Test Based on Biinomial Probability Distribution

  • E. L. Kuleshov
  • K. A. Petrov
  • T. S. Kirillova
  • R. A. Khaliullin
Analysis and Synthesis of Signals and Images
  • 2 Downloads

Abstract

This paper describes the goodness-of-fit test based on binomial probability distribution, which reduces to a sequence of bilateral hypothesis test for the value of the probability distribution function with different values of its argument. It is shown that each element of this sequence is unbiased locally by the most powerful test. This paper proposes an algorithm for calculating the significance level, free of probability distributions. The quality of this test is evaluated by numerical modeling.

Keywords

goodness-of-fit test interval estimate probability distribution law significance level 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Yu. Lemeshko and S. N. Postovalov, “Application of Goodness-of-Fit Test for Complex Hypotheses,” Avtometriya, No. 2, 88–102 (2001).Google Scholar
  2. 2.
    I. A. Klyavin and A. N. Tyrsin, “Method of choosing the Best Distribution Law for a Random Variable Based on Experimental Data,” Avtometriya 49 (1), 18–25 (2013) [Optoelectron., Instrum. Data Process. 49 (1), 14–20 (2013)].Google Scholar
  3. 3.
    A. V. Lapko and V. A. Lapko, “Nonparametric Algorithms of Pattern Recognition in the Problem of Testing a Statistical Hypothesis on Identity of Two Distribution Laws of Random Variables,” Avtometriya 46 (6), 47–53 (2010) [Optoelectron., Instrum. Data Process. 46 (6), 545–550 (2010)].Google Scholar
  4. 4.
    B. Yu. Lemeshko, S. B. Lemeshko, and S. N. Postovalov, “Power of the Goodness-of-Fit Test with Close Alternatives,” Izmeritel’naya Tekhnika, No. 2, 22–27 (2007).MATHGoogle Scholar
  5. 5.
    G. I. Salov, “On the Power of a New Statistical Test and Two-Sample Wilcoxon Test,” Avtometriya 50 (1), 44–59 (2014) [Optoelectron., Instrum. Data Process. 50 (1), 36–48 (2014)].Google Scholar
  6. 6.
    E. L. Kuleshov, “Goodness-of-Fit Test Based on the Interval Estimation,” Avtometriya 52 (1), 30–36 (2016) [Optoelectron., Instrum. Data Process. 52 (1), 24–29 (2016)].Google Scholar
  7. 7.
    E. L. Kuleshov, K. A. Petrov, and T. S. Kirillova, “Modeling the Goodness-of-Fit Test Based on the Interval Estimation of the Probability Distribution Function,” in Proc. of the Intern. Conf. on DOOR 2016 CEUR-WS, Vladivostok, Russia, Sept. 19-23, 2016, Vol. 1623. http://ceur-ws.org/Vol-1623/paperapp10.pdf.Google Scholar
  8. 8.
    D. R. Cox and D. V. Hinckley, Theoretical Statistics (Chapman & Hall, 1974).CrossRefGoogle Scholar
  9. 9.
    A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1979) [in Russian].MATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • E. L. Kuleshov
    • 1
  • K. A. Petrov
    • 1
  • T. S. Kirillova
    • 1
  • R. A. Khaliullin
    • 1
  1. 1.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations