Advertisement

Scalable Application for the Search of Global Minima of Multiextremal Functions

  • I. V. Bychkov
  • G. A. Oparin
  • A. N. Tchernykh
  • A. G. Feoktistov
  • S. A. Gorsky
  • R. Rivera-Rodriguez
Analysis and Synthesis of Signals and Images
  • 11 Downloads

Abstract

This paper describes the urgent issue of providing scalability of computations in the solution of multiextremal problems arising in different fields of scientific studies, including image processing. There is an approach proposed for the development of the Gradient scalable application for solving the problem of global optimization of multiextremal functions with account for a multistart method in the Orlando framework. An additional step of computations is implemented in the problem solving scheme, which makes it possible to decompose the problem with account for the performance of computational resources and thereby minimize the time it takes to solve it as opposed to a classical multistart method. Special agents of the metamonitoring system for measuring the performance of resource with regard to the problem solved are developed.

Keywords

distributed computing scalable application multiextremal functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Georgiou and M. Hautreux, “Evaluating Scalability and Efficiency of the Resource and Job Management System on Large HPC Clusters,” Lecture Notes Comput. Sci. 7698, 134–156 (2013).CrossRefGoogle Scholar
  2. 2.
    M. D. Khomenko, A. V. Dubrov, and F. Kh. Mirzade, “Decomposition Strategies in the Problems of Simulation of Additive Laser Technology Processes,” Avtometriya 52 (6), 110–119 (2016) [Optoelectron., Instrum., Data Process. 52 (6), 621–629 (2016)].Google Scholar
  3. 3.
    V. K. Baklitskii, A. M. Bochkarev, and M. P. Musyakov, Signal Filtering Methods in Correlation-Extreme Navigation Systems (Radio i Svyaz’, Moscow, 1986) [in Russian].Google Scholar
  4. 4.
    A. A. Zhiglyavskii and A. G. Zhilinskaya, Global Extrema Search Methods (Moscow, Nauka, 1991) [in Russian].Google Scholar
  5. 5.
    S. I. Elesina and M. B. Nikiforov, “Study of the Properties of a Multistart Method in Global Optimization,” Proektirovanie i Tekhnologiya Elektronnykh Sredstv, No. 2, 45–49 (2011).Google Scholar
  6. 6.
    J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems for Grid Computing,” Grid Comput. 3 (3–4), 171–200 (2005).CrossRefGoogle Scholar
  7. 7.
    D. Talia, “Workflow Systems for Science: Concepts and Tools,” ISRN Software Eng. 2013, 1–15 (2013). https://www.hindawi.com/journals/isrn/2013/404525.CrossRefGoogle Scholar
  8. 8.
    J. Tao, J. Kolodziej, R. Ranjan, et al., “A Note on New Trends in Data-Aware Scheduling and Resource Provisioning in Modern HPC Systems,” Future Generation Comput. Syst. 51, 45–46 (2015).CrossRefGoogle Scholar
  9. 9.
    H. Cho, F. Olivera, and S. D. Guikema, “A Derivation of the Number of Minima of the Griewank Function,” Appl. Math. Computat. 204 (2), 694–701 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Jamil and X.-S. Yang, “A Literature Survey of Benchmark Functions for Global Optimization Problems,” Intern. J. Math. Modeling Numer. Optimization. 4 (2), 150–194 (2013).CrossRefzbMATHGoogle Scholar
  11. 11.
    M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman, 1979).zbMATHGoogle Scholar
  12. 12.
    I. V. Bychkov, G. A. Oparin, A. G. Feoktistov, et al., “Multiagent Control of Computational Systems on the Basis of Meta-Monitoring and Imitational Simulation,” Avtometriya 52 (6), 3–9 (2016) [Optoelectron., Instrum. Data Process. 52 (6), 107–112 (2016)].Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • I. V. Bychkov
    • 1
  • G. A. Oparin
    • 1
  • A. N. Tchernykh
    • 2
  • A. G. Feoktistov
    • 1
  • S. A. Gorsky
    • 1
  • R. Rivera-Rodriguez
    • 2
  1. 1.Matrosov Institute for System Dynamics and Control Theory, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Centro de Investigación Cientifica y de Educatión Superior de EnsenadaEnsenadaMexico

Personalised recommendations