Skip to main content
Log in

Classification of Hyperspectral Images with Different Methods of Training Set Formation

  • Analysis and Synthesis of Signals and Images
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The efficiency of the methods of controlled spectral and spectral-spatial classification of vegetation types on the basis of hyperspectral pictures with different methods of training set formation is evaluated. The dependence of the classification accuracy on the number of spectral features is considered. It is shown that simultaneous allowance for spatial and spectral features ensures highquality classification of similarly looking types of vegetation by merely using training sets with the maximum degree of the pixel distribution over the image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Bondur, “Advanced Approaches to Processing Large Fluxes of Hyperspectral and Multispectral Aerospace Information,” Issled. Zemli iz Kosmosa, No. 1, 4–16 (2014).

    Google Scholar 

  2. T. H. Chan, A. Ambikapathi, W. K. Ma, and C. Y. Chi, “Robust Affine Set Fitting and Fast Simplex Volume Max-Min for Hyperspectral Endmember Extraction,” IEEE Trans. Geosci. Remote Sensing 51 (7), 3982–3997 (2013).

    Article  ADS  Google Scholar 

  3. K. Cawse-Nicholson, S. B. Damelin, A. Robin, and M. Sears, “Determining the Intrinsic Dimension of a Hyperspectral Image Using Random Matrix Theory,” IEEE Trans. Image Process. 22 (4), 1301–1310 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S. M. Borzov and O. I. Potaturkin, “Classification of Vegetation Types on the Basis of Remote Sensing,” Vestn. NGU, Ser. Inform. Tekhnol. 12 (4), 13–22 (2014).

    Google Scholar 

  5. O. I. Potaturkin, S. M. Borzov, A. O. Potaturkin, and S. B. Uzilov, “Methods and Technologies of Processing of Multispectral and Hyperspectral Data of High-Resolution Remote Sensing,” Vych. Tekhnol. 18 (special issue), 53–60 (2013).

    Google Scholar 

  6. A. Plaza, J. A. Benediktsson, J. W. Boardman, et al., “Recent Advances in Techniques for Hyperspectral Image Processing,” Remote Sensing of Environment 113 (1), 110–122 (2009).

    Article  Google Scholar 

  7. X. Huang and L. Zhang, “An SVM Ensemble Approach Combining Spectral, Structural, and Semantic Features for the Classification of High-Resolution Remotely Sensed Imagery,” IEEE Trans. Geosci. Remote Sensing 51 (1), 257–272 (2013).

    Article  ADS  Google Scholar 

  8. Z. Wang, N. M. Nasrabadi, and T. S. Huang, “Spatial-Spectral Classification of Hyperspectral Images Using Discriminative Dictionary Designed by Learning Vector Quantization,” IEEE Trans. Geosci. Remote Sensing 52 (8), 4808–4822 (2014).

    Article  ADS  Google Scholar 

  9. S. M. Borzov, P. V. Melnikov, I. A. Pestunov, et al., “Complex Processing of Hyperspectral Images on the Basis of Spectral and Spatial Information,” Vych. Tekhnol. 21 (1), 25–39 (2016).

    Google Scholar 

  10. C. Chen, W. Li, E. W. Tramel, et al., “Spectral-Spatial Preprocessing Using Multihypothesis Prediction for Noise-Robust Hyperspectral Image Classification,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7 (4), 1047–1059 (2014).

    Article  Google Scholar 

  11. F. Palsson, M. Ulfarsson, and J. R. Sveinsson, “Hyperspectral Image Denoising Using a Sparse Low Rank Model and Dual-Tree Complex Wavelet Transform,” in Proc. of the IEEE Intern. Conf. on Geoscience and Remote Sensing (IGARSS), Quebec, Canada, 2014, pp. 3670–3673.

    Google Scholar 

  12. Y. Zhen, H. Mingyi, J. E. Fowler, and D. Qian, “Hyperspectral Image Classification Based on Spectra Derivative Features and Locality Preserving Analysis,” in Proc. of the Signal and Information Processing (ChinaSIP), IEEE China Summit & Intern. Conf. Xi’an, China, July 9–13, 2014, pp. 138–142.

  13. T. M. Lillesand, R. W. Kiefer, and J. W. Chipman, Remote Sensing and Image Interpretation (John Wiley & Sons, New York, 2004).

    Google Scholar 

  14. D. P. Hader, Image Analysis: Methods and Applications (CRC Press, London, 2000).

    Google Scholar 

  15. A. V. Kuznetsov and V. V. Myasnikov, “Comparison of Algorithms of Controlled Elemental Classification of Hyperspectral Images,” Komp. Optika 38 (3), 494–502 (2014).

    Article  ADS  Google Scholar 

  16. V. A. Fursov, S. A. Bibikov, and O. A. Baida, “Topical Classification of Hyperspectral Images Based on the Coefficient of Contingency,” Komp. Optika 38 (1), 154–158 (2014).

    Article  ADS  Google Scholar 

  17. M. Fauvel, Yu. Tarabalka, J. Benediktsson, et al., “Advances in Spectral-Spatial Classification of Hyperspectral Images,” Proc. IEEE 101 (3), 652–675 (2013).

    Article  Google Scholar 

  18. Promising Information Technologies of Remote Sensing of the Earth, Ed. by V. A. Soifer (Novaya Tekhnika, Samara, 2015) [in Russian].

  19. S. M. Borzov, A. O. Potaturkin, O. I. Potaturkin, and A. M. Fedotov, “Analysis of the Efficiency of Classification of Hyperspectral Satellite Images of Natural and Man-Made Areas,” Avtometriya 52 (1), 3–14 (2016) [Optoelectron., Instrum. Data Process. 52 (1), 1–10 (2016)].

    Google Scholar 

  20. S. M. Borzov and O. I. Potaturkin, “Efficiency of the Spectral-Spatial Classification of Hyperspectral Imaging Data,” Avtometriya 53 (1), 32–42 (2017) [Optoelectron., Instrum. Data Process. 53 (1), 26–34 (2017)].

    Google Scholar 

  21. M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe, “220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992. Indian Pine Test Site 3,” Purdue University Research Repository, 2015.

    Google Scholar 

  22. N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (Cambridge University Press, 2000).

    Book  MATH  Google Scholar 

  23. C. C. Chang and C. J. Lin, “LIBSVM: A Library for Support Vector Machines,” ACM Trans. Intel. Syst. Technol. 2 (3), 1–27 (2011).

    Article  Google Scholar 

  24. J. A. Richards, Remote Sensing Digital Image Analysis (Springer-Verlag, Berlin, 1999).

    Book  Google Scholar 

  25. A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal,” IEEE Trans. Geosci. Remote Sensing 26 (1), 65–74 (1988).

    Article  ADS  Google Scholar 

  26. G. F. Hughes, “On the Mean Accuracy of Statistical Pattern Recognizers,” IEEE Trans. Inform. Theory. 14 (1), 55–63 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Borzov.

Additional information

Original Russian Text © S.M. Borzov, O.I. Potaturkin, 2018, published in Avtometriya, 2018, Vol. 54, No. 1, pp. 89–97.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzov, S.M., Potaturkin, O.I. Classification of Hyperspectral Images with Different Methods of Training Set Formation. Optoelectron.Instrument.Proc. 54, 76–82 (2018). https://doi.org/10.3103/S8756699018010120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699018010120

Keywords

Navigation