Skip to main content
Log in

Non-Contact Triangulation Measurement of Distances to Mirror Surfaces

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Metrological analysis of triangulation laser sensors for measuring distance to mirror surfaces was performed. Theoretical and experimental studies have established that the measurement range of distance depends on the angle of incidence of the laser beam, and the main factor that affects the measurement accuracy is the rotation of the sensor in the plane of incidence. A non-contact sensor for measuring distance to liquid surfaces which provides signaling upon reaching a prescribed value is designed. An overview of triangulation measurement systems is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Baibakov, V. I. Ladygin, A. I. Pastushenko, et al., “Laser Triangulation Position Sensors in Industrial Control and Diagnostic Systems,” Avtometriya 40, (2), 105–113 (2004).

    Google Scholar 

  2. T. T. Liebe and K. Coste, “Distance Measurement Utilizing Image-Based Triangulation,” IEEE Sensors J. 13 (1), 234–244 (2013). DOI: 10.1109/JSEN.2012.2212428.

    Article  Google Scholar 

  3. Yu. R. Bulychev and E. N. Chepel, “Quasi-Optimal Method for Solving the Triangulation Problem in Priori Uncertainty,” Avtometriya 53 (6), 83–91 (2017) [Optoelectron., Instrum. Data Process. 53 (6), 604–611 (2017)].

    Google Scholar 

  4. S. V. Mikhlyaev, “Triangulation Sensing of Melt Surface During Crystal Growth,” Avtometriya 39 (5), 30–41 (2003).

    Google Scholar 

  5. T. Haw and G. Kercheck, “Dual Beam Non-Contact Displacement Sensor,” US Pat. 9228878. Publ. 05.01.2016.

  6. E.-G. Lierke, W. M. Heide, and M. Achatz, “Verfahren zur Berührungslosen Messung der Oberflächenspannung und der Viskosität,” DE Pat. 2836972. Offenlegungstag 06.03.1980.

  7. M. M. Mordasov and A. P. Savenkov, “Non-Contact Non-Destructive Aerohydrodynamic monitoring of Liquid Viscosity,” Zavodksaya Laboratoriya. Diagnostika Materialov 74 (2), 22–25 (2008).

    Google Scholar 

  8. G. Xu, D. Yan, Ya. Wang, and K. Ju, “Research of the Liquid Level Detection System for Integral Stereolithography System,” Appl. Mech. Mater. 347–350, 32–35 (2013). DOI: 10.4028/www.scientific.net/AMM.347-350.32.

    Article  Google Scholar 

  9. W. Mruk, M. Adams, W. Kilkerr, et al.,“Optical Non-Contact Sensor for Detecting Material Level in a Container,” US Pat. 7399985. Publ. 17.01.2008.

  10. Q. Li, N. Song, and D. Liu, “Device and Method for Detecting Liquid Level of Molten Silicon Using Laser Reflected from Curved Mirror,” US Pat. 8785898. Publ. 22.07.2014.

  11. Ch. King, “Optical Level Measurement System,” US Pat. 4963731. Publ. 16.10.1990.

  12. W. Zhang and B. H. Zhuang, “Non-Contact Measurement of Scratches on Aircraft Skins and Windows,” Proc. SPIE 3204, 90–94 (1997). DOI: 10.1117/12.294445.

    Article  ADS  Google Scholar 

  13. S. V. Mikhlyaev, “Analysis of Optical Triangulation Systems for Measuring Mirror Surface Profiles,” Avtometriya 41 (4), 78–91 (2005).

    Google Scholar 

  14. S. V. Mikhlyaev, “Influence of a Tilt of Mirror Surface on the Measurement Accuracy of Laser Triangulation Rangefinder,” J. Physics: Conf. Ser. 48, 739–744 (2006). DOI: 10.1088/1742-6596/48/1/140.

    Google Scholar 

  15. A. N. Baibakov, K. I. Kuchinskii, S. V. Plotnikov, and E. A. Titova, “Position-Sensitive Photodetectors in Triangulation Dimensional Inspection System for Dynamic Objects,” Avtometriya 41 (6), 53–61 (2005).

    Google Scholar 

  16. H. Tao and W. Liu, “Measurement System for Liquid Level Based on Laser Triangulation and Angular Tracking,” J. Computers. 5 (9), 1444–1447 (2010). DOI: 10.4304/jcp.5.9.1444-1447.

    Article  Google Scholar 

  17. J. H. Ross and E. C. Hayes, “Method and Apparatus for Water Level Determination,” US Pat. 6545286. Publ. 08.04.2003.

  18. A. P. Savenkov and M. E. Safonova, “A Non-Contact Sensor of Distance to a Liquid surface,” in Proc. of the 3rd Intern. Sci. and Practical Conf. of Young Scientists ”The World of Science without Borders” (TSTU, Tambov, 2016), pp. 128–132.

    Google Scholar 

  19. V. P. Kiryanov, A. V. Kiryanov, and V. V. Chukanov, “Using the Differential Method of Measurement to Control the Accuracy of Precision Angle Measuring Structures,” Avtometriya 52 (4), 45–52 (2016) [Optoelectron., Instrum. Data Process. 52 (4), 354–359 (2016)].

    Google Scholar 

  20. S. V. Mishchenko, P. V. Balabanov, A. A. Krimshtein, and S. V. Ponomarev, “Dynamics of Chemical Adsorption with Regenerative Substances on the Basis of Superoxides of Alkaline Metal and Absorbers,” Vestn. TGTU 16 (4), 870–881 (2010). DOI: 10.17217/issn.0136-5835.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Savenkov.

Additional information

Original Russian Text © M.M. Mordasov, A.P. Savenkov, M.E. Safonova, V.A. Sychev, 2018, published in Avtometriya, 2018, Vol. 54, No. 1, pp. 80–88.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mordasov, M.M., Savenkov, A.P., Safonova, M.E. et al. Non-Contact Triangulation Measurement of Distances to Mirror Surfaces. Optoelectron.Instrument.Proc. 54, 69–75 (2018). https://doi.org/10.3103/S8756699018010119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699018010119

Keywords

Navigation