Advertisement

Stabilization of Astronomic Images Using a Controlled Flat Mirror

  • S. Yu. Bokalo
  • I. M. Bokashov
  • D. M. Lyakhov
  • S. V. Pikulev
  • A. V. Chernykh
Optical Information Technologies

Abstract

A prototype of a key element of adaptive-optics systems — a controlled flat mirror used to correct light beam tilts — was designed. An algorithm for correcting atmospheric distortions of low-intensity light waves and real-time software were developed. In laboratory experiments, a value of 100 Hz was achieved for the bandwidth of a closed-loop system. The efficiency of the developed software was confirmed by daytime observations of stars.

Keywords

adaptive-optics system atmospheric turbulence wavefront least-squares method PD controller 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. I. Shanin, Adaptive Optics Systems for Tilt Correction. Resonant Adaptive Optics (Tekhnosfera, Moscow, 2013) [in Russian].Google Scholar
  2. 2.
    J. Watson, “Tip-Tilt Correction for Astronomical Telescopes using Adaptive Control,” in Proc. of the Wescon Integrated Circuit Expo 1997, Santa Clara, USA, 1997. http://www.osti.gov/ scitech/biblio/647009.Google Scholar
  3. 3.
    Optics in Motion LLC. http://www.opticsinmotion.net/index.html.Google Scholar
  4. 4.
    M. Hart, S. J. D. Hope, J. Nagy, et al., “Quantitative Measurements of Daytime Near Infrared Sky Brightness at the AEOS 3.6 m Telescope,” in Proc. of the AMOS Surveillance Technologies Conf., Maui, USA, 2014. http://amostech.com/TechnicalPapers/2014/Poster/HART.pdf.Google Scholar
  5. 5.
    S. Jefferies, M. Hart, D. Hope, N. Murphy, “Daylight Operation of a Sodium Laser Guide Star for Wave Front Sensing,” in Proc. of the AMOS Surveillance Technologies Conf., Maui, USA, 2016. http://amostech.com/TechnicalPapers/2016/Adaptive-Optics Imaging/Jefferies.pdf.Google Scholar
  6. 6.
    P. Vereš, R. Jedicke, L. Denneau, et al., “Improved Asteroid Astrometry and Photometry with Trail Fitting,” Publ. Astronom. Soc. Pacific. 124 (921), 1197–1207 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    D. M. Lyakhov, “Optimal Arrangement of Actuators for Square Mirrors with Free Edges,” Avtometriya 52 (1), 70–78 (2016) [Optoelectron., Instrum. Data Process. 52 (1), 57–64 (2016)].Google Scholar
  8. 8.
    V. V. Fedorov, Theory of Optimal Experiment (Nauka, Moscow, 1971) [in Russian].Google Scholar
  9. 9.
    A. A. Tokovinin, Lectures in Adaptive Optics. http://www.ctio.noao. edu/~atokovin/tutorial/.Google Scholar
  10. 10.
    V. A. Besekerskii and E. P. Popov, Theory of Automatic Control Systems (Nauka, Moscow, 1971) [in Russian].Google Scholar
  11. 11.
    M. R. Whiteley, J. S. Gibson, “Adaptive Laser Compensation for Aero-Optics and Atmospheric Disturbances,” in Proc. of the 38th Plasmadynamics and Lasers Conf., Florida, USA, 2007. DOI: 10.2514/6.2007-4012. https://arc.aiaa.org/doi/pdf/10.2514/6.2007-4012.Google Scholar
  12. 12.
    G4 Technology Co., Ltd. http://g4.com.tw/web/file/product/demo/740-Prosilica GE DataSheet 680 en.pdf.Google Scholar
  13. 13.
    “Lasers and Laser Systems. Methods for Measuring the Parameters of Laser Beams. Stability of Beam Position (GOST R ISO 11670-2010) (Standardinform, Moscow, 2011) [in Russian].Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. Yu. Bokalo
    • 1
  • I. M. Bokashov
    • 1
  • D. M. Lyakhov
    • 1
  • S. V. Pikulev
    • 1
  • A. V. Chernykh
    • 1
  1. 1.Research Institute of the Luch Research and Production AssociationPodolsk 142100 Moscow RegionRussia

Personalised recommendations