Comparison of the Diffraction Efficiency of Reflection Holographic Gratings for Different Recording Schemes in Photopolymer Materials

  • E. F. PenEmail author
  • V. V. Shelkovnikov
Optical Information Technologies


The relationship of the diffraction efficiencies of volume reflection holograms obtained with the use of double-beam and single-beam recording schemes in absorbing light-sensitive materials is studied theoretically and experimentally. This relationship is demonstrated by an example of a particular photopolymer material.


holography recording media photopolymer materials reflection holograms diffraction efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Sharangovich and E. A. Dovolnov, “Models of Holographic Record of Reflection and Transmitted Diffraction Gratings in Optical Absorbent Photopolymeric Materials,” Proc. SPIE 5464, 399–410 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    S. Gallego, M. Ortu˜no, C. Neipp, et al., “Maximum Effective Optical Thickness of the Gratings Recorded in Photopolymers,” Proc. SPIE 5827, 107–117 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Shelkovnikov, E. F. Pen, and V. I. Kovalevsky, “Optimal Optical Density of the Absorbing Holographic Materials,” Opt. Memory Neural Networks (Inform. Opt.) 16 (2), 75–83 (2007).CrossRefGoogle Scholar
  4. 4.
    Yu. N. Denisyuk, “On the Reflection of Optical Properties of an Object in the Wave Field of the Radiation Scattered by it,” Optika Spektrosk. 15 (4), 522–532 (1963).Google Scholar
  5. 5.
    E. F. Pen, I. A. Zarubin, V. V. Shelkovnikov, and E. V. Vasil’ev, “Method for Determining the Shrinkage Parameters of Holographic Photopolymer Materials,” Avtometriya 52 (1), 60–69 (2016) [Optoelectron., Instrum. Data Process. 52 (1), 49–56 (2016)].Google Scholar
  6. 6.
    V. V. Shelkovnikov, E. V. Vasil’ev, V. V. Russkikh, et al., “Monochrome and Two-Color Holograms in Layered Photopolymer Materials,” Avtometriya 52 (4), 107–117 (2016) [Optoelectron., Instrum. Data Process. 52 (4), 404–412 (2016)].Google Scholar
  7. 7.
    H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Techn. J. 48 (9), 2909–2947 (1969).CrossRefGoogle Scholar
  8. 8.
    F.-K. Bruder, F. Deuber, T. Fäcke, et al., “Reaction-Diffusion Model Applied to High Resolution Bayfolr HX Photopolymer,” Proc. SPIE 7619, 76190I (2010).CrossRefGoogle Scholar
  9. 9.
    V. V. Shelkovnikov, E. F. Pen, E. V. Vasil’ev, and P. E. Tverdokhleb, “Development of Holographic Photopolymer Materials and Methods for Studying Them,” in Proc. All-Russia Workshop “Yurii Nikolaevich Denisyuk as a founder of Russian holography,” Ioffe Institute of Physics and Technology, St. Petersburg, 2007, pp. 241–261.Google Scholar
  10. 10.
    H. S. Bagdasarian, Theory of Radical Polymerization (Nauka, Moscow, 1966) [in Russian].Google Scholar
  11. 11.
    S. A. Babin, E. V. Vasil’ev, V. I. Kovalevskii, et al., “Methods and Devices for Testing Holographic Photopolymer Materials,” Avtometriya 39 (2), 57–70 (2003).Google Scholar
  12. 12.
    E. F. Pen, “Device for Testing Light-Sensitive Holographic Materials,” Patent No. 165622 RF, Publ. 27.10.2016, Bul. No.30.Google Scholar
  13. 13.
    W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, “Photopolymers for Holography,” Proc. SPIE 1212, 20–29 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Vorozhtsov Institute of Organic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations