Intensity of Resonant Harmonic Generated in the Multiphoton Ionization Regime

Abstract

The relative intensities of the resonant and nonresonant high-order harmonics, generated by singly charged gallium and indium ions in the field of a laser pulse with a duration of 20 fs and intensity ranging from 5 × 1013 to 2 × 1014 W/cm2, are calculated. The harmonic intensity is found via the matrix element of multiphoton transition within the perturbation theory including the resonant contribution. The latter increases the harmonic intensity at the transition from the ground state to the autoionizing state. We consider laser wavelength when this transition corresponds to 7 and 15 photons.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys.-JETP. 20 (5), 1307–1314 (1965).

    MathSciNet  Google Scholar 

  2. 2

    R. A. Ganeev, L. B. Elouga Bom, J.-C. Kieffer, and T. Ozaki, “Systematic investigation of resonance-induced single-harmonic enhancement in the extreme-ultraviolet range,” Phys. Rev. A. 75, 063806 (2007). https://doi.org/10.1103/PhysRevA.75.063806

    ADS  Article  Google Scholar 

  3. 3

    R. A. Ganeev, “High-order harmonic generation in laser surface ablation: current trends,” Phys.-Usp. 56 (8) 772 (2013). https://doi.org/10.3367/UFNe.0183.201308b.0815

    ADS  Article  Google Scholar 

  4. 4

    L. Plaja and L. Roso, “High-order harmonic generation in a two-level atom effect of the multiphoton resonances tuned by the light shift,” J. Mod. Opt. 40, 793 (1993). https://doi.org/10.1080/09500349314550831

    ADS  Article  Google Scholar 

  5. 5

    C. F. Faria, R. Kopold, W. Becker, and J.-M. Rost, “Resonant enhancements of high-order harmonic generation,” Phys. Rev. A. 65, 023404 (2002). https://doi.org/10.1103/PhysRevA.65.023404

    ADS  Article  Google Scholar 

  6. 6

    R. Taieb, V. Veniard, J. Wassaf, and A. Maquet, “Roles of resonances and recollisions in strong-field atomic phenomena. II. High-order harmonic generation,” Phys. Rev. A. 68, 033403 (2003). https://doi.org/10.1103/PhysRevA.68.033403

    ADS  Article  Google Scholar 

  7. 7

    M. B. Gaarde and K. Schafer, “Enhancement of many high-order harmonics via a single multiphoton resonance,” Phys. Rev. A. 64, 013820 (2001). doi.org/https://doi.org/10.1103/PhysRevA.64.013820

    ADS  Article  Google Scholar 

  8. 8

    M. Plummer and C. J. Noble, “Resonant enhancement of harmonic generation in argon at 248 nm,” J. Phys. B: At. Mol. Opt. Phys. 35, L51 (2002). https://doi.org/10.1088/0953-4075/35/2/101

    ADS  Article  Google Scholar 

  9. 9

    K. Ishikawa, “Photoemission and ionization of He+ under simultaneous irradiation of fundamental laser and high-order harmonic pulses,” Phys. Rev. Lett. 91, 043002 (2003). https://doi.org/10.1103/PhysRevLett.91.043002

    ADS  Article  Google Scholar 

  10. 10

    P. A. Oleinikov, V. T. Platonenko, and G. Ferrante, “Erratum: “Resonant generation of high harmonics,” JETP Lett. 60 (4), 246 (1994).

    ADS  Google Scholar 

  11. 11

    D. Milošević, “High-energy stimulated emission from plasma ablation pumped by resonant high-order harmonic generation,” J. Phys. B: At. Mol. Opt. Phys. 40, 3367 (2007). https://doi.org/10.1088/0953-4075/40/17/005

    ADS  Article  Google Scholar 

  12. 12

    M. V. Frolov, N. L. Manakov, T. S. Sarantseva, M. Yu. Emelin, M. Yu. Ryabikin, and A. F. Starace, “Analytic description of the high-energy plateau in harmonic generation by atoms: Can the harmonic power increase with increasing laser wavelengths?” Phys. Rev. Lett. 102 (24), 243901 (2009). https://doi.org/10.1103/PhysRevLett.102.243901

    ADS  Article  Google Scholar 

  13. 13

    V. Strelkov, “Role of autoionizing state in resonant high-order harmonic generation and attosecond pulse production,” Phys. Rev. Lett. 104, 123901 (2010). https://doi.org/10.1103/PhysRevLett.104.123901

    ADS  Article  Google Scholar 

  14. 14

    V.-M. Gkortsas, S. Bhardwaj, C.-J. Lai, K.-H. Hong, E. L. Falcão-Filho, and F. X. Kärtner, “Interplay of mulitphoton and tunneling ionization in short-wavelength-driven high-order harmonic generation,” Phys. Rev. A. 84, 013427 (2011). https://doi.org/10.1103/PhysRevA.84.013427

    ADS  Article  Google Scholar 

  15. 15

    E. Fiordilino, F. Morales, G. Castiglia, P. P. Corso, R. Daniele, and V. V. Strelkov, “High-order harmonic generation via bound–bound transitions in an elliptically polarized laser field,” J. Opt. Sos. Am. B. 34 (1), 2673–2681 (2017). https://doi.org/10.1364/JOSAB.34.000018

    ADS  Article  Google Scholar 

  16. 16

    E. A. Migal, S. Y. Stremoukhov, and F. V. Potemkin, “Ionization-free resonantly enhanced low-order harmonic generation in a dense gas mixture by a mid-IR laser field,” Phys. Rev. A. 101 (2), 021401 (2020). https://doi.org/10.1103/PhysRevA.101.021401

    ADS  Article  Google Scholar 

  17. 17

    J. M. Ngoko Djiokap and A.F. Starace, “Origin of the multiphoton-regime harmonic-generation plateau structure,” Phys. Rev. A. 102, 013103 (2020). https://doi.org/10.1103/PhysRevA.102.013103

    ADS  Article  Google Scholar 

  18. 18

    M. Tudorovskaya and M. Lein, “High-order harmonic generation in the presence of a resonance,” Phys. Rev. A. 84, 013430 (2011). https://doi.org/10.1103/PhysRevA.84.013430

    ADS  Article  Google Scholar 

  19. 19

    V. V. Strelkov, M. A. Khokhlova, and N. Yu Shubin, “High-order harmonic generation and Fano resonances,” Phys. Rev. A. 89, 053833 (2014). https://doi.org/10.1103/PhysRevA.89.053833

    ADS  Article  Google Scholar 

  20. 20

    T. Sato and K. L. Ishikawa, “Time-dependent complete-active-space self-consistent-field method for multielectron dynamics in intense laser fields,” Phys. Rev. A. 88, 023402 (2013). https://doi.org/10.1103/PhysRevA.88.023402

    ADS  Article  Google Scholar 

  21. 21

    Y. Orimo, T. Sato, and K. L. Ishikawa, “Application of the time-dependent surface flux method to the time-dependent multiconfiguration self-consistent-field method,” Phys. Rev. A. 100, 013419 (2019). https://doi.org/10.1103/PhysRevA.100.013419

    ADS  Article  Google Scholar 

  22. 22

    V. V. Kim, G. S. Boltaev, M. Iqbal, N. A. Abbasi, H. Al-Harmi, I. S. Wahyutama, T. Sato, K. L. Ishikawa, R. A. Ganeev, and A. S. Alnaser, “Resonance enhancement of harmonics in the vicinity of 32 nm spectral range during propagation of femtosecond pulses through the molybdenum plasma,” J. Phys. B: At. Mol. Opt. Phys. 53, 195401 (2020). https://doi.org/10.1088/1361-6455/aba581

    ADS  Article  Google Scholar 

  23. 23

    A. I. Magunov and V. V. Strelkov, “S-matrix approach to the problem of high-harmonic generation in the field of intense laser wave,” Phys. Wave Phenom. 25 (1), 24–29 (2017). https://doi.org/10.3103/S1541308X17010046

    ADS  Article  Google Scholar 

  24. 24

    U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). https://doi.org/10.1103/PhysRev.124.1866

    ADS  Article  MATH  Google Scholar 

  25. 25

    S. L. Chin and P. A. Golovinski, “High harmonic generation in the multiphoton regime: correlation with polarizability,” J. Phys. B: At. Mol. Opt. Phys. 28, 55–63 (1995). https://doi.org/10.1088/0953-4075/28/1/008

    ADS  Article  Google Scholar 

  26. 26

    Atomic Spectra Database, https://www.nist.gov/pml/ atomic-spectra-database

  27. 27

    B. Peart, I. C. Lyon, and K. Dolder, “Measurements of absolute photoionisation cross sections of Ga+ and Zn+ ions,” J. Phys. B: At. Mol. Phys. 20, 5403–5410 (1987). https://doi.org/10.1088/0022-3700/20/20/018

    ADS  Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 16-12-10279).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. I. Magunov.

Additional information

Translated by Yu. Sin’kov

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magunov, A.I., Strelkov, V.V. Intensity of Resonant Harmonic Generated in the Multiphoton Ionization Regime. Phys. Wave Phen. 28, 369–374 (2020). https://doi.org/10.3103/S1541308X20040081

Download citation