Interferometry in Acoustic-Data Processing Using Extended Antennas. Space–Time Analogy

Abstract

A theory of interferometric processing of hydroacoustic data using an extended antenna is presented. An explicit relationship between the 2D spectral density of double Fourier transform of the interference pattern formed by a moving source and the aperture and angular dependence of received field is derived. The gain, antenna directional characteristic, and processing noise immunity are estimated. The results of numerical simulation are presented and discussed. Some ways to adapt the results obtained to the problems of solid-state acoustics using the space–time analogy are proposed and outlined.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, “Spectrogram and localization of a sound source in shallow water,” Acoust. Phys. 63 (4), 449–461 (2017). https://doi.org/10.1134/S1063771017040078

    ADS  Article  Google Scholar 

  2. 2

    I. V. Kaznacheev, G. N. Kuznetsov, V. M. Kuz’kin, and S. A Pereselkov, “An interferometric method for detecting a moving sound source with a vector-scalar receiver,” Acoust. Phys. 64 (1), 37–48 (2018). https://doi.org/10.1134/S1063771018010104

    ADS  Article  Google Scholar 

  3. 3

    E. S. Kaznacheeva, G. N. Kuznetsov, V. M. Kuz’kin, G. A. Lyakhov, and S. A. Pereselkov, “Measurement capability of the interferometric method of sound source localization in the absence of data on the waveguide transfer function,” Phys. Wave Phenom. 27 (1), 73–78 (2019). https://doi.org/10.3103/S1541308X19010126

    ADS  Article  Google Scholar 

  4. 4

    E. S. Kaznacheeva, V. M. Kuz’kin, G. A. Lyakhov, S. A. Pereselkov, and S. A. Tkachenko, “Adaptive algorithms for interferometric processing,” Phys. Wave Phenom. 28 (3), 267–273 (2020). https://doi.org/10.3103/S1541308X20030103

    ADS  Article  Google Scholar 

  5. 5

    S. D. Chuprov, Interference Structure of Sound in a Layered Ocean. Ocean Acoustics: Current State (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  6. 6

    S. A. Akhmanov and R. V. Khokhlov, Problems of Nonlinear Optics (Electromagnetic Waves in Nonlinear Dispersive Media) (Gordon and Breach Sci., New York, 1972).

    Google Scholar 

  7. 7

    L. M. Brekhovskikh and Yu. P. Lysanov, Fundamentals of Ocean Acoustics (Springer, 2003).

    Google Scholar 

  8. 8

    G. S. Landsberg, Optics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  9. 9

    G. N. Kuznetsov, V. M. Kuz’kin, G. A. Lyakhov, S. A. Pereselkov, and D. Yu. Prosovetskiy, “Direction finding of a noise sound source,” Phys. Wave Phenom. 27 (3), 237–241 (2019). https://doi.org/10.3103/S1541308X19030117

    ADS  Article  Google Scholar 

  10. 10

    V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Exitons (Interscience, London, 1966).

    Google Scholar 

  11. 11

    H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91 (18), 183518 (2007). https://doi.org/10.1063/1.2803315

    ADS  Article  Google Scholar 

  12. 12

    B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “Experimental acoustic ground cloak in air,” Phys. Rev. Lett. 106 (25), 253901 (2011). https://doi.org/10.1103/PhysRevLett.106.253901

    ADS  Article  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Foundation for Basic Research, project nos. 19-08-00941 and 19-29-06075.

I.V. Kaznacheev acknowledges the support of the President of the Russian Federation (grant no. MK-933.2019.8).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. M. Kuz’kin.

Additional information

Translated by Yu. Sin’kov

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaznacheev, I.V., Kuz’kin, V.M., Kutsov, M.V. et al. Interferometry in Acoustic-Data Processing Using Extended Antennas. Space–Time Analogy. Phys. Wave Phen. 28, 326–332 (2020). https://doi.org/10.3103/S1541308X20040068

Download citation