Advertisement

Russian Aeronautics

, Volume 61, Issue 2, pp 257–264 | Cite as

Simulation of a Rocket Engine Nozzle Discharge Coefficient

  • A. N. SabirzyanovEmail author
  • A. I. Glazunov
  • A. N. Kirillova
  • K. S. Titov
Aircraft and Rocket Engine Theory
  • 22 Downloads

Abstract

Multiparameter studies of the discharge coefficient dependence on the nozzle geometry and the presence of a condensed phase in combustion products were performed. The simulation results obtained satisfactorily agree with the well-known generalized data. The modern computational fluid dynamics methods were shown to be able to refine the generalized empirical relations.

Keywords

nozzle rocket engine discharge coefficient gas-dynamic and two-phase components of discharge coefficient simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gubertov, A.M., Mironov, V.V., Borisov, D.M., et al., Gazodinamicheskie i teplofizicheskie processy v raketnykh dvigatelyakh tverdogo topliva (Gas Dynamic and Thermophysical Processes in Solid Rocket Engines), Koroteev, A.S., Ed., Moscow: Mashinostroenie, 2004.Google Scholar
  2. 2.
    Ganiev, R.I., Nikolaev, N.A., Fafurin, V.A., Sabirzyanov, A.N., and Yavkin, V.B., Choice of a Turbulence Grid and Model to Calculate the Discharge Coefficient of the Standard Orifice Plate, Izv. Vuz. Av. Tekhnika, 2008, vol. 51, no. 4, pp. 21–24 [Russian Aeronautics (Engl. Transl.), vol. 51, no. 4, pp. 377–381].Google Scholar
  3. 3.
    Tyryshkin, R.A., Sabirzyanov, A.N., Fafurin, V.A., Fefelov, V.V., and Yavkin, V.B., Flow Simulation in a Flowmeter with a Standard Orifice Plate, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2010, no. 2, pp. 109–116.CrossRefGoogle Scholar
  4. 4.
    Shishkov, A.A., Panin, S.D., and Rumyantsev, B.V., Rabochie processy v raketnykh dvigatelyakh tverdogo topliva: Spravochnik (Operating Processes in Solid Rocket Engines: Handbook), Moscow: Mashinostroenie, 1988.Google Scholar
  5. 5.
    Zasukhin, O.N., Bulat, P.V., and Prodan, N.V., Special Aspects of Application of Turbulence Models to Calculation of Supersonic Flows in Advanced Airbreathing Jet Engines, Dvigatel’, 2012, no. 1 (79), pp. 20–23.Google Scholar
  6. 6.
    Grey, R.E. and Wilsted, H.D., Performance of Conical Jet Nozzles in Terms of Flow and Velocity Coefficients: National Advisory Committee for Aeronautics. Lewis Flight Propulsion Lab., Tech. Rep. no. 933, Cleveland, 1949.Google Scholar
  7. 7.
    Sokolov, V.D. and Yagudin, S.V., Discharge Coefficient of Axisymmetric Arbitrary-Shape Constriction Nozzles, Uchenye Zapiski TsAGI, 1975, vol. 6, no. 1, pp. 117–121.Google Scholar
  8. 8.
    Lavrukhin, G.N., Aerogazodinamika reaktivnykh sopel. (Aero and Gasdynamics of Jet Nozzles), Moscow: Fizmatlit, 2003, vol.1.Google Scholar
  9. 9.
    Termodinamicheskie i teplofizicheskie svoistva produktov sgoraniya (Thermodynamic and Thermophysical Properties of Combustion Products), Glushko, V.P., Ed., Moscow: AN SSSR–VINITI, 1971.Google Scholar
  10. 10.
    Pirumov, U.G. and Roslyakov, G.S., Gazovaya dinamika sopel (Gas Dynamics of Nozzles), Moscow: Nauka, Fizmatlit, 1990.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. N. Sabirzyanov
    • 1
    Email author
  • A. I. Glazunov
    • 1
  • A. N. Kirillova
    • 1
  • K. S. Titov
    • 1
  1. 1.Tupolev Kazan National Research Technical UniversityKazanRussia

Personalised recommendations