Advertisement

Russian Aeronautics

, Volume 61, Issue 2, pp 201–211 | Cite as

Analytical Synthesis of Stabilization Laws for Spacecraft Orbit Attitude Using Information on an Angle and the Full Vector of Angular Velocity

  • N. E. ZubovEmail author
  • E. A. Mikrin
  • V. N. Ryabchenko
  • I. V. Sorokin
Flight Dynamics and Control of Flight Vehicles
  • 12 Downloads

Abstract

The problem of stabilizing the spacecraft orbit attitude was solved analytically for the sixth order model of its rotary motion with the use of the output feedback control synthesis that is based on decomposition of a control object. Numerical simulation data are presented.

Keywords

MIMO-system spacecraft output control orbital stabilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Branets, V.N., Platonov, V.N., Sumarokov, A.V., and Timakov, S.N., Stabilization of a Wheels Carrying Communication Satellite without Angle and Angular Velocity Sensors, Izv. RAN. Teoriya i Sistemy Upravleniya, 2008, vol. 47, no.1, pp. 127–137 [J. of Computer and Systems Sciences Int. (Engl. Transl.), vol. 47, no.1, pp. 118–128].zbMATHGoogle Scholar
  2. 2.
    Platonov, V.N., On the Possibility of Long-Term Maintenance of Geostationary Satellite Attitude without Using the External Information Sensors and Inertial Sensors, Kosmicheskie Issledovaniya, 2009, vol. 47, no. 3, pp. 263–270 [Cosmic Research (Engl. Transl.), vol. 47, no. 3, pp. 235–242].Google Scholar
  3. 3.
    Efimov, D.A., Sumarokov, A.V., and Timakov, S.N., On the Stabilization of a Communication Satellite without Measuring its Angular Velocity, Izv. RAN. Teoriya i Sistemy Upravleniya, 2012, vol. 51, no. 5, pp. 119–128 [J. of Computer and Systems Sciences Int. (Engl. Transl.), vol. 51, no. 5, pp. 732–741].MathSciNetzbMATHGoogle Scholar
  4. 4.
    Zubov, N.E., Zybin, E.Yu., Mikrin, E.A., Misrikhanov, M.Sh., Proletarkii, A.V., and Ryabchenko, V.N., Output Control of a Spacecraft Motion Spectrum, Izv. RAN. Teoriya i Sistemy Upravleniya, 2014, vol. 53, no. 4, pp. 111–122 [J. of Computer and Systems Sciences Int. (Engl. Transl.), vol. 53, no. 4, pp. 576–586].zbMATHGoogle Scholar
  5. 5.
    Zubov, N.E., Mikrin, E.A., Ryabchenko, V.N., Oleinik, A.S., and Efanov, D.E., The Spacecraft Angular Velocity Estimation in the Orbital Stabilization Mode by the Results of the Local Vertical Sensor Measurements, Vestnik MGTU im. Baumana. Seriya Priborostroenie, 2014, vol. 98, no. 5, pp. 3–17.Google Scholar
  6. 6.
    Romanenko, L.G., Romanenko, A.G., and Samarova, G.G., Aircraft Longitudinal Control without a Pitch Command in the Autopilot, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 4, pp. 25–29 [Russian Aeronautics (Engl. Transl.), vol. 47, no. 4, pp. 361–367].Google Scholar
  7. 7.
    Zubov, N.E., Mikrin, E.A., Misrikhanov, M.Sh., and Ryabchenko, V.N., Stabilization of Coupled Motions of an Aircraft in the Pitch-Yaw Channels in the Absence of Information About the Sliding Angle: Analytical Synthesis, Izv. RAN. Teoriya i Sistemy Upravleniya, 2015, vol. 54, no.1, pp. 95–105 [J. of Computer and Systems Sciences Int. (Engl. Transl.), vol. 54, no.1, pp. 93–103].MathSciNetzbMATHGoogle Scholar
  8. 8.
    Zubov, N.E., Mikrin, E.A., Misrikhanov, M.Sh., and Ryabchenko, V.N., Output Control of the Longitudinal Motion of a Flying Vehicle, Izv. RAN. Teoriya i Sistemy Upravleniya, 2015, vol. 54, no. 5, pp. 164–176 [J. of Computer and Systems Sciences Int. (Engl. Transl.), vol. 54, no. 5, pp. 825–837.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Zubov, N.E., Mikrin, E.A., Ryabchenko, V.N., and Fomichev, A.V., Synthesis of Control Laws for Aircraft Lateral Motion at the Lack of Data on the Slip Angle: Analytical Solution, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 1, pp. 61–70 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 1, pp. 64–73].Google Scholar
  10. 10.
    Zubov, N.E., Lapin, A.V., and Mikrin, E.A., Stabilization of Spacecraft Orbital Attitude, Kosmicheskaya Tekhnika i Tekhnologii, 2013, no. 3, pp. 74–81.Google Scholar
  11. 11.
    Saleh, J., Castet, J.-F., Spacecraft Reliability and Multi-State Failures: A Statistical Approach, New York: John Wiley & Sons, 2011.CrossRefGoogle Scholar
  12. 12.
    Lv, Y., Hu, Q., Ma, G., Zhang, J., Attitude Cooperative Control of Spacecraft Formation via Output Feedback, Aircraft Engineering and Aerospace Technology, 2012, vol. 84, no. 5, pp. 321–329.CrossRefGoogle Scholar
  13. 13.
    Nelson, R., Flight Stability and Automatic Control, New York: McGraw-Hill, 1998.Google Scholar
  14. 14.
    Liu, Z., Zhou, F., Zhou, J., Flight Control of Unpowered Flying Vehicle Based on Robust Dynamic Inversion, Proc. of the 25th Chinese Control Conf., Heilongjiang, China, 2006, pp. 693–698.Google Scholar
  15. 15.
    Hovakimyan, N., Lavretsky, E., Calise, A.J., Sattigeri, R., Decentralized Adaptive Output Feedback Control via Input/Output Inversion, Proc. IEEE Conf. Dec. Control, Maui, HI, 2003, pp. 1699–1704.Google Scholar
  16. 16.
    Zubov, N.E., Mikrin, E.A., and Ryabchenko, V.N., Matrichnye metody v teorii i praktike sistem avtomaticheskogo upravleniya letatel’nykh apparatov (Matrix Methods in Theory and Practice of Aircrafts’ Automatic Control Systems), Moscow: Izd. MGTU im. N.E. Baumana, 2016.Google Scholar
  17. 17.
    Leonov, G.A. and Shumafov, M.M., Metody stabilizatsii lineinykh upravlyaemykh sistem (Methods of Linear Controllable Systems Stabilization), St. Petersburg: Izd. SPbGU, 2005.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • N. E. Zubov
    • 1
    Email author
  • E. A. Mikrin
    • 2
  • V. N. Ryabchenko
    • 1
  • I. V. Sorokin
    • 2
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.Korolev Rocket and Space Corporation EnergiyaKorolev, Moskow regionRussia

Personalised recommendations