Russian Aeronautics

, Volume 61, Issue 2, pp 194–200 | Cite as

Numerical Simulation of Detachment Dynamics of a Payload from the Parent Aircraft

  • L. V. BykovEmail author
  • O. A. Pashkov
  • M. N. Pravidlo
  • V. V. Tishkov
  • D. S. Yanyshev
Flight Dynamics and Control of Flight Vehicles


This paper presents the numerical simulation of detachment dynamics of a payload from its parent aircraft. The simulation allowed obtaining the free motion parameters of the payload taking into account its mass and momentum characteristics, aerodynamic forces and moments as well as gravity.


parent aircraft payload gas dynamics equations mesh model computational fluid dynamics aerodynamic performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Korizhin, O.V., The Method for Aerodynamic Characteristics Calculation of Stores, Which are Separated from the Aircraft, Vestnik MAI, 2015, vol. 22, no. 1, pp. 7–13.Google Scholar
  2. 2.
    Baranov, N.A., Belotserkovskii, A.S., Kanevskii, M.I., and Turchak, L.I., Chislennye metody dinamiki letatel’nogo apparata v usloviyah aerodinamicheskoi interferentsii (Numerical Methods of Aircraft Dynamics in Conditions of Aerodynamic Interference), Moscow, Nauka, 2001.Google Scholar
  3. 3.
    Sedlov, A.A. and Ivanov, V.L., Numerical Simulation of Gas Dynamics and Heat Exchange of Jet Impinging on a Surface, Izv. Vuz. Av. Tekhnika, 2012, vol. 55, no.4, pp. 75–78 [Russian Aeronautics (Engl. Transl.), vol. 55, no.4, pp. 430–434].Google Scholar
  4. 4.
    McBride, B.J., Gordon, S., and Reno, M.A., Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species, NASA Report TM-4513, 1993.Google Scholar
  5. 5.
    Bykov, L.V., Molchanov, A.M., Shcherbakov, M.A., and Yanyshev, D.S., Vychislitel’naya mekhanika sploshnykh sred v zadachakh aviatsionnoi i kosmicheskoi tekhniki (Computational Continuum Mechanics in the Problems of Aviation and Space Technology), Moscow: Lenand, 2015.Google Scholar
  6. 6.
    Venkateswaran, S., Weiss, J., and Merkle, C., Propulsion Related Flowfields Using the Preconditioned Navier–Stokes Equations, 28th Joint Propulsion Conference, AIAA Paper 92–3437, Nashville, 1992.Google Scholar
  7. 7.
    Mingazov, B.G. and Davletshin, I.S., On Choice of Turbulence Models and Grid Parameters for Computation of Flows in Diffuser Ducts, Izv. Vuz. Av. Tekhnika, 2011, vol. 54, no. 4. pp. 24–28 [Russian Aeronautics (Engl. Transl.), vol. 54, no. 4. pp. 359–366].Google Scholar
  8. 8.
    Larina, E.V., Kryukov, I.A., and Ivanov, I.E., Numerical Simulation of Axisymmetric Jets Using Differential Eddy Viscosity Models, Trudy MAI, 2016, no.91.Google Scholar
  9. 9.
    Menter, F.R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal, 1994, vol. 32, no. 8, pp. 1598–1605.CrossRefGoogle Scholar
  10. 10.
    Weiss, J.M. and Smith, W.A., Preconditioning Applied to Variable and Constant Density Flows, AIAA Journal, 1995, vol. 33, no. 11, pp. 2050–2057.CrossRefzbMATHGoogle Scholar
  11. 11.
    Barth, T.J. and Jespersen D., The Design and Application of Upwind Schemes on Unstructured Meshes. Technical Report AIAA–89–0366. AIAA 27th Aerospace Sciences Meeting, Reno, Nevada, 1989.CrossRefGoogle Scholar
  12. 12.
    Bukanov, K.V. and Zherekhov, V.V., Studies of the Screening Surface Proximity on Integral Aerodynamic Characteristics of Rectangular High-Lift Wings of Different Aspect Ratio, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 1, pp. 34–40 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 1, pp. 36–43].Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • L. V. Bykov
    • 1
    Email author
  • O. A. Pashkov
    • 1
  • M. N. Pravidlo
    • 2
  • V. V. Tishkov
    • 1
  • D. S. Yanyshev
    • 1
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia
  2. 2.Toropov State Machine Building Design Bureau “Vympel”MoscowRussia

Personalised recommendations