Russian Aeronautics

, Volume 61, Issue 2, pp 149–155 | Cite as

Selection of an Audibility Criterion for Propeller Driven Unmanned Aerial Vehicle

  • P. A. MoshkovEmail author
  • V. F. Samokhin
  • A. A. Yakovlev
Aircraft Equipment


Based on a flight experiment, the difference between the total aircraft noise level and the ambient noise is proposed to be used as an audibility criterion for unmanned aerial vehicles equipped with piston engines. It is found that the unmanned aerial vehicle becomes audible for an observer at a criterion value of 3 dBA.


audibility criterion acoustic detectability acoustic profile spectral profile unmanned aerial vehicle engine-propeller power plant perceivable noise 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moiseyev, V.S., Gushchina, D.S., Moiseyev, G.V., and Saleyev, A.B., Unmanned Aerial Complexes. I. Structure and Performance, Izv. Vuz. Av. Tekhnika, 2006, vol. 49, no. 2, pp. 3–7 [Russian Aeronautics (Engl. Transl.), vol. 49, no. 2, pp. 1–7].Google Scholar
  2. 2.
    Moiseyev, V.S., Gushchina, D.S., Moiseyev, G.V., and Saleyev, A.B., Unmanned Aerial Complexes. II. Classification, Basic Principles of Design and Application, Izv. Vuz. Av. Tekhnika, 2006, vol. 49, no. 3, pp. 3–5 [Russian Aeronautics (Engl. Transl.), vol. 49, no. 3, pp. 1–5].Google Scholar
  3. 3.
    Moshkov, P.A., Prediction and Reduction of Perceivable Noise for Light Propeller Airplanes, Cand. Sc. (Tech.) Dissertation, Moscow: MAI, 2015.Google Scholar
  4. 4.
    Moshkov, P.A., Research of an Audibility Criterion for Propeller-Driven Unmanned Aerial Vehicles, Gagarinskie Chteniya-2016: XLII Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya (Gagarin Science Conference-2016), Moscow: MAI, 2016, vol. 3, pp. 672–673.Google Scholar
  5. 5.
    Barry, F.W. and Magliozzi, B., Noise Detectability Prediction Method for Low Tip Speed Propellers, Wright-Patterson AFB, Ohio, 1971, Tech. Rept. AFAPL-TR-71-37.CrossRefGoogle Scholar
  6. 6.
    Janakirim, D.S. and Scruggs, B.V., Noise and Detectability Characteristics of Small-Scale Remotely Piloted Vehicle Propellers, Journal of Aircraft, 1982, vol. 19, no. 12, pp. 1052–1060.CrossRefGoogle Scholar
  7. 7.
    Bougaiov, N. and Danik, Yu., Hough Transform for UAV’s Acoustic Signals Detection, The Advanced Science Journal, 2015, no. 6, pp. 65–68.CrossRefGoogle Scholar
  8. 8.
    Pham, T. and Srour, N., TTCP AG-6: Acoustic Detection and Tracking of UAVs, Proc. SPIE, 2004, vol. 5417, pp. 24–30.CrossRefGoogle Scholar
  9. 9.
    William, P.E. and Hoffman, M.W, Classification of Military Ground Vehicles Using Time Domain Harmonics’ Amplitudes, IEEE Transactions on Instrumentation and Measurement, 2011, vol. 60, no. 11, pp. 3720–3731.CrossRefGoogle Scholar
  10. 10.
    Depireux, D.A., Varma, S., Baras, J., Srour, N., and Pham, T., Vehicle Classification Using Acoustic Data Based on Biology Hearing Model and Multi-Scale Vector Quantization, Proc. of the 4th Annual Symposium of ARL Federal Laboratory, College Park, MD, USA, 21–23 March 2000, pp. 83–87.Google Scholar
  11. 11.
    Lo, K.W. and Ferguson, B.G., Localization of Small Arms Fire Using Acoustic Measurements of Muzzle Blast and/or Ballistic Shock Wave Arrivals, The Journal of the Acoustical Society of America, 2012, vol. 132, no. 5, pp. 2997–3017.CrossRefGoogle Scholar
  12. 12.
    Hoglund, E., Brungart, D., Iyer, N., Hamil, J., Mobley, F., and Hall, J., Auditory Acuity for Aircraft in Real-World Ambient Environments, The Journal of the Acoustical Society of America, 2010, vol. 128, no. 1, pp. 164–171.CrossRefGoogle Scholar
  13. 13.
    Kazhan, V.G., Moshkov, P.A., and Samokhin, V.F., Ambient Background Noise under Acoustic Tests of Aircrafts at the Local Aerodrome, Nauka i Obrazovanie. MGTU im. N.E.Baumana, 2015 no. 7, pp. 146–170.Google Scholar
  14. 14.
    Gaski, P.T., Characterizing and Classifying Acoustical Ambient Sound Profiles. Master’s Thesis, Air Force Institute of Technology, 2015, AFIT-ENS-MS-15-M-122, URL: DADA618133.Google Scholar
  15. 15.
    Yu, J., Raspet, R., Webster, J., and Abbott, J.P., Wind Noise Measured at the Ground Surface, The Journal of the Acoustical Society of America, 2011, vol. 129, no. 2, pp. 622–632.CrossRefGoogle Scholar
  16. 16.
    Jackson, I.R., Kendrick, P., Cox, T.J., Fazenda, B.M., and Li, F.F., Perception and Automatic Detection of Wind-Induced Microphone Noise, The Journal of the Acoustical Society of America, 2014, vol. 136, no. 3, pp. 1176–1186.CrossRefGoogle Scholar
  17. 17.
    Raspet, R., and Webster, J., Wind Noise under a Pine Tree Canopy, The Journal of the Acoustical Society of America, 2015, vol. 137, no. 2, pp. 651–659.CrossRefGoogle Scholar
  18. 18.
    International Standards and Recommended Practices. Environmental Protection. Annex 16 to the Convention on Internal Civil Aviation, vol. 1, Aircraft Noise. ICAO, 2011. URL: Scholar
  19. 19.
    Moshkov, P.A. and Samokhin, V.F., Integrated Model of Propeller-Driven Light Aircraft Power Plant Noise, Vestnik MAI, 2016, vol. 23, no. 4, pp. 36–44.Google Scholar
  20. 20.
    Samokhin, V.F., Semiempirical Method for Estimating the Noise of a Propeller. Journal of Engineering Physics and Thermophysics, 2012, vol. 85, no. 5, pp. 1157–1166.CrossRefGoogle Scholar
  21. 21.
    Moshkov, P.A., Empirical Method of Prediction Aviation Piston Engine Noise, Vestnik SGAU, 2016, vol. 15, no. 2, pp. 152–161.Google Scholar
  22. 22.
    Dmitriev, V.G. and Samokhin, V.F., Complex of Algorithms and Programs for Calculation of Aircraft Noise, Uchenye Zapiski TsAGI, 2014, no. 2, pp. 137–157 [TsAGI Science Journal [Engl. Transl.), 2014, vol. 45, nos. 3–4, pp. 367–388].Google Scholar
  23. 23.
    Andreeva, I.G. and Vartanyan, I.A., White Noise Masks Some Temporal Parameters of the Auditory Localization of Radially Moving Targets, Phiziologiya Cheloveka, 2004, vol. 30, no. 2, pp. 38–44 [Human Physiology (Engl. Transl.), vol. 30, no. 2, pp. 159–165].Google Scholar
  24. 24.
    Andreeva, I.G., Bakhtina, A.V., and Gvozdeva, A.P., Resolution of Human Hearing on the Distance at Approaching and Withdrawing Sound Images of Different Spectral Composition, Sensornye Sistemy, 2014, vol. 28, no. 4, pp. 3–12.Google Scholar
  25. 25.
    Malinina, E.S. and Andreeva, I.G., Auditory Aftereffects of Approaching and Withdrawing Sound Sources: Dependence on the Trajectory and Location of Adapting Stimuli, Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2013. vol. 49. no. 3. pp. 211–223 [Journal of Evolutionary Biochemistry and Physiology (Engl. Transl.), vol. 49, no. 3, pp. 316–329].Google Scholar
  26. 26.
    Rimskaya-Korsakova, L.K., Nechitaeva, Yu.V., and Pushkina, N.A., Recognition of Changes in the Level of High-Frequency Pulses at Masking: Auditory Analysis of Changes in the Temporal Envelopes of the Sound Complexes “Complicated Masker—Pulse”, Sensornye Sistemy, 2013, vol. 27, no. 2. pp. 171–182.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • P. A. Moshkov
    • 1
    Email author
  • V. F. Samokhin
    • 2
  • A. A. Yakovlev
    • 3
  1. 1.AO Grazhdanskie Samolety SukhogoMoscowRussia
  2. 2.Central Aerohydrodynamic Institute (TsAGI)ZhukovskiiRussia
  3. 3.OOO TemperoMoscowRussia

Personalised recommendations