Skip to main content
Log in

Optical Design for a Cubesat: Unobscured Telescope, Using Freeform Mirrors and a Curved Detector

  • Aircraft Equipment
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2018

This article has been updated

Abstract

The possibility of constructing an optical scheme of a telescope for a small satellite based on mirrors with freeform surfaces and a curved photodetector is considered. It is shown that the use of a new element base allows the effective area of the main mirror to be maximized and the field of view up to 9.4 times to be increased in comparison with the classical scheme of the Ritchey–Chretien scheme in ensuring the high image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 24 November 2018

    Since the time, when the manuscript was submitted, the official name of affiliation of authors’ E.R. Muslimov, E. Hugot, M. Ferrari, and T. Behaghel has been changed. Now the proper affiliation is: Aix Marseille Univ., CNRS, CNES, LAM, Marseille, France.

    The following acknowledgement should be added: “The authors would like to acknowledge the European commission for funding this work through the Program H2020-ERC-STG-2015 – 678777 of the European Research Council, as well as the French Research Agency through the program LabEx FOCUS ANR-11-LABX-0013”.

References

  1. Glushchenkov, V.A. and Yusupov, R.Yu., Controlled Separation of Nanosatellites by Means of the Pulsed Magnetic Field, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 1, pp. 3–9 [Russian Aeronautics (Engl.Transl.), vol. 60, no. 1, pp. 1–8].

    Google Scholar 

  2. Alifanov, O.M., Egorov, Yu.G., Kul’kov, V.M., Terent’ev, V.V., and Firsyuk, S.O., An Approach to Forming the Design Performance of the Attitude Control System for Small Spacecraft, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 15–20 [Russian Aeronautics (Engl.Transl.), vol. 58, no. 4, pp. 376–382].

    Google Scholar 

  3. Poghosyan, A. and Golkar, A., Cubesat Evolution: Analyzing CubeSat Capabilities for Conducting Science Missions, Progress in Aerospace Sciences, 2017, no. 88, pp. 59–83.

    Article  Google Scholar 

  4. Bouwmeester, J. and Guo, J., Survey of Worldwide Pico-and Nanosatellite Missions, Distributions and Subsystem Technology, Acta Astronautica, 2010, vol. 67, nos. 7–8, pp. 854–862.

    Article  Google Scholar 

  5. Andersen, G., Asmolov, O., Dearborn, M.E., and McHarg, M.G., FalconSAT-7: A Membrane Photon Sieve CubeSat Solar Telescope, Proc. SPIE, 2012, vol. 8442, pp. 84421C–1–8.

    Article  Google Scholar 

  6. Schwartz, N., Pearson, D., Todd, S., Vick, A., Lunney, D., and MacLeod, D., A Segmented Deployable Primary Mirror for Earth Observation from a CubeSat Platform, Proc. 30th Annual AAIA/USU Conference on Small Satellites, 2016, SSC16-WK-3.

    Google Scholar 

  7. Jin, H., Lim, J., Kim, Y., and Kim, S., Optical Design of a Reflecting Telescope for CubeSat, Journal of the Optical Society of Korea, 2013, vol. 17, pp. 533–537.

    Article  Google Scholar 

  8. Chen, C.-W. and Chen, C.-R., Optical Design and Tolerance Analysis of a Reflecting Telescope for CubeSat, Proc. SPIE, 2015, vol. 9602, pp. 96020P–1–9.

    Article  Google Scholar 

  9. Ye, J., Gao, Z., Wang, S., Cheng, J., Wang, W., and Sun, W., Comparative Assessment of Orthogonal Polynomials for Wavefront Reconstruction over the Square Aperture, Journal of the Optical Society of America A, 2014, vol. 31, no. 10, pp. 2304–2311.

    Article  Google Scholar 

  10. Muslimov, E.R., Hugot, E., Jahn, W., Vives, S., Ferrari, M., Chambion, B., Henry, D., and Gaschet, C., Combining Freeform Optics and Curved Detectors for Wide Field Imaging: A Polynomial Approach over Squared Aperture, Optics Express, 2017, vol. 25, no. 13, pp. 14598–14610.

    Article  Google Scholar 

  11. Agócs, T., Navarro, R., Venema, L., and Kroes, G., Optimizing an Active Extreme Asphere Based Optical System, Proc. SPIE, 2012, vol. 8550, pp. 85501G–1–13.

    Article  Google Scholar 

  12. Kim, S., Chang, S., Pak, K., Lee, K.J., Jeong, B., Kim, G.H., Kim, G.H., Shin, S.K., and Yoo, S.M., Fabrication of Electroless Nickel Plated Aluminum Freeform Mirror for an Infrared Off-Axis Telescope, Applied Optics, 2015, vol. 54, no. 34, pp. 10137–10144.

    Article  Google Scholar 

  13. Wolfs, F., Fess, E., DeFisher, S., Torres, J., and Ross, J., Freeform Grinding and Polishing with ProSurf, Proc. SPIE, 2015, vol. 9633, pp. 96331G–1–11.

    Google Scholar 

  14. Ferrari, M., Development of a Variable Curvature Mirror for the Delay Lines of the VLT Interferometer, Astron. Astrophys. Suppl. Ser., 1998, vol. 128, pp. 221–227.

    Article  Google Scholar 

  15. Chambion, B., Nikitushkina, L.I., Gaeremynck, Y., Jahn, W., Hugot, E., Moulin, G., Getin, S., Vandeneynde, A., and Henry, D., Tunable Curvature of Large Visible CMOS Image Sensors: Towards New Optical Functions and System Miniaturization, Proc. of the IEEE 66th Electronic Components and Technology Conference, Las Vegas, 2016, pp. 178–187.

    Google Scholar 

  16. Laslandes, M., Hugot, E., Ferrari, M., Hourtoule, C., Singer, C., Devilliers, C., Lopez, C., and Chazallet, F., Mirror Actively Deformed and Regulated for Applications in Space: Design and Performance, Optical Engineering, 2013, vol. 52, no. 9, pp. 091803–1–12.

    Article  Google Scholar 

  17. Gaschet, Ch., Chambion, B., Gétin, S., Moulin, G., Vandeneynde, A., Caplet, S., Henry, D., Hugot, E., Jahn, W., Behaghel, T., Lombardo, S., Roulet, M., Muslimov, E.R., and Ferrari, M., Curved Sensors for Compact High-Resolution Wide Field Designs, Proc. SPIE, 2017, vol. 10376, pp. 1037603–1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Pavlycheva.

Additional information

Original Russian Text © E.R. Muslimov, E. Hugot, M. Ferrari, T. Behaghel, N.K. Pavlycheva, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2018, No. 1, pp. 5–10.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muslimov, E.R., Hugot, E., Ferrari, M. et al. Optical Design for a Cubesat: Unobscured Telescope, Using Freeform Mirrors and a Curved Detector. Russ. Aeronaut. 61, 1–7 (2018). https://doi.org/10.3103/S1068799818010014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799818010014

Keywords

Navigation