Skip to main content
Log in

Determining the Maximum-Performance Temperature of Hard-Alloy Cutting Inserts on the Basis of Their Electromagnetic Properties

  • Published:
Russian Engineering Research Aims and scope

Abstract

The temperature dependence of the electromagnetic properties of hard tool alloys is studied experimentally. Temperature intervals corresponding to maximum alloy performance are identified. A method is proposed for determining the maximum-performance temperature of hard-alloy cutting inserts from the temperature dependence of the electromagnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bobrov, V.F., Osnovy teorii rezaniya metallov (Fundamental Theory of Metal Cutting), Moscow: Mashinostroenie, 1975.

  2. Vasin, S.A., Vereshchaka, A.S., and Kushner, V.S., Rezanie metallov. Termomekhanicheskii podkhod k sisteme vzaimosvyazei pri rezanii: Uchebnik dlya tekhnicheskikh vuzov (Cutting of Metals. Thermomechanical Approach to the Relationships during Cutting: Manual for Higher Education Technical Institutions), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2001.

  3. Vereshchaga, A.S., Rabotosposobnost’ rezhushchego instrumenta s iznosostoikimi pokrytiyami (Performance of Cutting Tool with Wear-Resistant Coatings), Moscow: Mashinostroenie, 1993.

  4. Skhirtladze, A.G., Grechishnikov, V.A., Grigor’ev, S.N., and Korotkov, I.A., Proektirovanie metalloobrabatyvayushchikh instrumentov: uchebnoe posobie (Design of Metal Processing Tools: Manual), St. Petersburg: Lan’, 2015.

  5. Zorev, N.N. and Fetisov, Z.M., Obrabotka rezaniem tugoplavkikh splavov (Cutting of Refractory Alloys), Moscow: Mashinostroenie, 1966.

  6. Loladze, T.N., Prochnost’ i iznosostoikost’ rezhushchego instrumenta (Durability and Wear-Resistance of Cutting Tool), Moscow: Mashinostroenie, 1982.

  7. Makarov, A.D., Optimizatsiya protsessov rezaniya (Optimization of Cutting Processes), Moscow: Mashinostroenie, 1976.

  8. Petrushin, S.I., Danilenko, B.D., and Retyunskii, O.Yu., Optimizatsiya svoistv materiala v kompozitsionnoi rezhushchei chasti lezviinykh instrumentov: uchebnoe posobie (Optimization of Material Properties in Composite Cutting Part of Blade Tools: Manual), Tomsk: Tomsk. Politekh. Inst., 1999.

  9. Poletika, M.F. and Kozlov, V.N., Contact loads and temperatures on worn tools, in Progressivnye tekhnologicheskie portsessy v mashinostroenii (Advanced Technological Processes in Machine Engineering), Tomsk: Tomsk. Politekh. Univ., 1997, pp. 18–21.

  10. Reznikov, A.N. and Reznikov, L.A., Teplovye protsessy v tekhnologicheskikh sistemakh (Thermal Processes in Technological Systems), Moscow: Mashinostroenie, 1990.

  11. Rozenberg, A.M. and Eremin, A.N., Elementy teorii protsessa rezaniya metallov (The Elements of the Cutting Theory of Metals), Moscow: Mashgiz, 1956.

  12. Silin, S.S., Metod podobiya pri rezanii metallov (Similarity Method in Metal Cutting), Moscow: Mashinostroenie, 1979.

  13. Starkov, V.K., Fizika i optimizatsiya rezaniya materialov (Physics and Optimization of Cutting of Materials), Moscow: Mashinostroenie, 2009.

  14. Grigor’ev, S.N., Metody povysheniya stoikosti rezhushchego instrumenta: uchebnik dlya vuzov (Strength Improvement of Cutting Tools: Manual for Higher Education Students), Moscow: Mashinostroenie, 2011.

  15. Zorev, N.N. and Uteshev, M.H., Untersuchung der Kintakt-spannunger auf den Arbeits-flachen des Werkzeugs miteiner Schneidenabrundung, Ber. Int. Forsch. Mechanische Prod. Tech., 1971, vol. 20, no. 1, pp. 31–32.

    Google Scholar 

  16. Shalamov, V.G., Savel’ev, D.A., and Smetanin, S.D., Producing powder by rotary grinding, Russ. Eng. Res., 2013, vol. 33, no. 3, pp. 133–135.

    Article  Google Scholar 

  17. Nguen Van Kyong and Yamnikov, A.S., Optimization of cutting regimes, Fundam. Prikl. Tekh. Tekhnol., 2012, no. 1 (291), pp. 56–63.

  18. Artamonov, E.V., Prochnost’ i rabotosposobnost’ smennykh tverdoslavnykh plastin sbornykh rezhushchikh instrumentov (Strength and Performance of Replaceable Hard-Alloy Plates in Composite Tools), Tyumen: Tyumen. Gos. Neftegaz. Univ., 2003, pp. 101–104.

  19. Vasilega, D.S. and Zyryanov, V.A., Analysis of possible application of temperature dependences of processed materials’ physical and mechanical properties to define the maximum workability temperature, Key Eng. Mater., 2017, vol. 737, pp. 114–118.

    Article  Google Scholar 

  20. Artamonov, E.V., Vasilega, D.S., and Tveryakov, A.M., Determining the maximum-performance temperature of hard-alloy cutting plates based on electric conductivity, Zavod. Lab., Diagn. Mater., 2014, vol. 80, no. 9, pp. 36–39.

    Google Scholar 

  21. Artamonov, E.V., Kuskov, V.N., Vasilega, D.S., and Tveryakov, A.M., RF Patent 2468894, Byull. Izobret., 2012, no. 34.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Artamonov, A. M. Tveryakov or A. S. Shtin.

Additional information

Translated by Bernard Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artamonov, E.V., Tveryakov, A.M. & Shtin, A.S. Determining the Maximum-Performance Temperature of Hard-Alloy Cutting Inserts on the Basis of Their Electromagnetic Properties. Russ. Engin. Res. 39, 259–261 (2019). https://doi.org/10.3103/S1068798X19030043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X19030043

Keywords:

Navigation