Russian Engineering Research

, Volume 37, Issue 3, pp 200–205 | Cite as

Influence of the microprojection geometry on the elastic contact of surfaces with regular microrelief

  • I. Yu. Tsukanov
  • A. Yu. Albagachiev
  • V. D. Danilov


The influence of surface microprojections—their shape and additional harmonics—on the elastic contact of a flat surface and a surface with regular microrelief is considered on the basis of the elastic contact of a half-plane and an undulatory surface. It is shown that the contact-pressure curve depends on the surface gradient of the microprojection and the mutual influence of adjacent microprojections.


surfaces elastic contact microprojections surface roughness undulation pressure curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Demkin, N.B. and Ryzhov, E.V., Kachestvo poverkhnosti i kontakt detalei mashin (The Surface Quality and the Contact of Machine Parts), Moscow: Mashinostroenie, 1981.Google Scholar
  2. 2.
    Suslov, A.G., Kachetsvo poverkhnostnogo sloya detalei mashin (Surface Layer Quality of Machine Parts), Moscow: Mashinostroenie, 2000.Google Scholar
  3. 3.
    Tsukanov, I.Yu., Parametric engineering model of elastic- plastic contact of rough surfaces with hardening material, Trenie Smazka Mash. Mekh., 2014, no. 12, pp. 17–25.Google Scholar
  4. 4.
    Husu, A.P., Wittenberg, Y.R., and Palmov, V.A., Sherokhovatost’ poverkhnostei (teoretiko-veroyatnostnyi podkhod) (Roughness of Surface (Theoretical and Probabilistic Approach), Moscow: Nauka, 1975.Google Scholar
  5. 5.
    Johnson, K.L., Contact Mechanics, Cambridge: Cambridge Univ. Press, 1985.CrossRefMATHGoogle Scholar
  6. 6.
    Goryacheva, I.G., Mekhanika friktsionnogo vzaimodeistviya (Mechanics of Frictional Interaction), Moscow: Nauka, 2001.Google Scholar
  7. 7.
    Shtaerman, I.Ya., Kontaktnaya zadachi teoprii uprugosti (Contact Problem of Elasticity Theory), Moscow: Gostekhteoretizdat, 1949.Google Scholar
  8. 8.
    Barber, J.R., Multiscale surfaces and Amonton’s law of friction, Tribol. Lett., 2013, vol. 49, pp. 539–543.CrossRefGoogle Scholar
  9. 9.
    Block, J.M. and Keer, L.M., Periodic contact problems in plane elasticity, J. Mech. Mater. Struct., 2008, vol. 3, no. 7, pp. 1207–1237.CrossRefGoogle Scholar
  10. 10.
    Popov, V.L., Mekhanika kontaktnogo vzaimodeistviya i fizika treniya. Ot nanotribologii do dinamiki zemletryasenii (Contact Mechanics and Friction Physics: From Nanotribology to Earthquake Dynamics), Moscow: Fizmatlit, 2013.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • I. Yu. Tsukanov
    • 1
  • A. Yu. Albagachiev
    • 1
  • V. D. Danilov
    • 2
  1. 1.Blagonravov Institute of Mechanical EngineeringRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Steel and AlloysMoscowRussia

Personalised recommendations