Russian Engineering Research

, Volume 37, Issue 3, pp 195–199 | Cite as

Hybrid laminated materials with slow fatigue-crack development

  • V. V. Antipov
  • N. Yu. Serebrennikova
  • O. G. Senatorova
  • L. V. Morozova
  • N. F. Lukina
  • Yu. N. Nefedova
Article
  • 21 Downloads

Abstract

The use of light aluminum–lithium alloys with high elastic moduli in hybrid laminated materials for the production of skin panels in airplane wings is considered.

Keywords

hybrid laminated materials reinforced wing panels skin panels Al–Li alloy GLARE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kablov, E.N., Innovative developments of the All-Russian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies of their recycling until 2030,” Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 3–33.Google Scholar
  2. 2.
    Fridlyander, I.N., Kolobnev, N.I., and Sandler, V.S., Alyuminii-litievye splavy. Mashinostroenie: Entsiklopediya. Tom II-3. Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy (Aluminium-Lithium Alloys. Machine Engineering: Encyclopedia, Vol. II-3: Nonferrous Metals and Alloys. Composite Metal Materials), Moscow: Mashinostroenie, 2001, pp. 156–185.Google Scholar
  3. 3.
    Antipov, V.V., The development strategy of titanium, magnesium, beryllium, and aluminum alloys, Aviats. Mater. Tekhnol., 2012, no. S, pp. 226–230.Google Scholar
  4. 4.
    Kablov, E.N., To the 80th anniversary of the All-Russian Institute of Aviation Materials, Deform. Razrushenie Mater., 2012, no. 6, pp. 17–19.Google Scholar
  5. 5.
    Kablov, E.N., The All-Russian Institute of Aviation Materials: continued development, Nauka Ross., 2012, no. 11, pp. 16–21.Google Scholar
  6. 6.
    Senatorova, O.G., Antipov, V.V., Lukina, N.F., et al., Lamellar metallopolymer composites, Aviats. Mater. Tekhnol., 2012, suppl., pp. 226–230.Google Scholar
  7. 7.
    Senatorova, O.G., Antipov, V.V., Lukina, N.F., et al., High-strength, crack-resistant, light aluminum-glassfibers Sial as the prospective aviation materials, Tekhnol. Legkikh Splavov, 2009, no. 2, pp. 29–31.Google Scholar
  8. 8.
    Plokker, M., Daverschot, D., and Beumler, T., Hybrid structure solution for the A400M wing attachment frames, Proc. 25th Symp. of the International Committee on Aeronautical Fatigue “Bridging the Gap between Theory and Operational Practice,” Rotterdam, The Netherlands, May 27–29, 2009, Amsterdam: Springer-Verlag, 2009, pp. 375–385.Google Scholar
  9. 9.
    Roebroeks, G.H.J.J., Hooijmeijer, P.A., Kroon, E.J., and Heinimann, M.B., The development of central, First Int. Conf. on Damage Tolerance of Aircraft Structures, Delft: Tech. Univ. of Delft, 2009.Google Scholar
  10. 10.
    Proektirovanie, konstruktsiya i sistemy samoletov i vertoletov: Entsiklopediya. Kniga 2. Samolety i vertolety. Tom IV-21. Mashinostroenie (Engineering, Constructions, and Systems of the Aircrafts and Helicopters: Encyclopedia, Book 2: The Aircrafts and Helicopters, Vol. IV-21: Machine Engineering), Moscow: Mashinostroenie, 2004, pp. 226–252.Google Scholar
  11. 11.
    Shestov, V.V., Antipov, V.V., Senatorova, O.G., and Sidel’nikov, V.V., Structural laminate aluminum-glassfiber materials 1441-Sial, Met. Sci. Heat Treat., 2014, vol. 55, no. 9, pp. 483–485.CrossRefGoogle Scholar
  12. 12.
    Kablov, E.N., Antipov, V.V., Senatorova, O.G., and Lukina, N.F., New laminate aluminum-glass-fiber materials based on aluminum-lithium alloy 1441 with lower density, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Mashinostr., 2011, suppl. 2, pp. 174–184.Google Scholar
  13. 13.
    Fridlyander, I.N., Anikhovskaya, L.I., Senatorova, O.G., et al., Kleenye metallicheskie i sloistye kompozity: Entsiklopediya. Tom II-3. Tsvetnye metally i splavy. Kompozitsionnye metallicheskie materialy (Clued Laminated Metals and Composites: Encyclopedia, Vol. II-3: Nonferrous Metals and Alloys. Composite Metal Materials), Fridlyander, I.N. and Kablov, E.N., Eds., Moscow: Mashinostroenie, 2001, pp. 814–832.Google Scholar
  14. 14.
    Serebrennikova, N.Yu., Antipov, V.V., Senatorova, O.G., et al., Hybrid laminated wing materials based on aluminum-lithium alloys, Aviats. Mater. Tekhnol., 2016, no. 3, pp. 3–8.Google Scholar
  15. 15.
    Oreshko, E.I., Erasov, V.S., Podzhivotov, N.Yu., and Lutsenko, A.N., Strength calculation of hybrid wing panel based on the sheets and profiles of high-strength aluminium-lithium alloy and laminated aluminumglass-fibers, Aviats. Mater. Tekhnol., 2016, no. 1 (40), pp. 53–61.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. V. Antipov
    • 1
  • N. Yu. Serebrennikova
    • 1
  • O. G. Senatorova
    • 1
  • L. V. Morozova
    • 1
  • N. F. Lukina
    • 1
  • Yu. N. Nefedova
    • 1
  1. 1.Russian State Institute of Aviation MaterialsMoscowRussia

Personalised recommendations