Skip to main content
Log in

On Regularities in the Realization of Electrostatic Instability of an Electroconducting Charged Jet Moving Relative to a Material Medium

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Increments of instability in capillary waves relevant to the bending–deformation mode on the surfaces of a conducting charged cylindrical jet of the ideal incompressible liquid moving at a constant speed relative to an ideal, incompressible material dielectric environment have been studied. It was shown that, although the bending–deformation waves are the last to be excited, after the axisymmetric and bending waves, their increment is the largest. The entire phenomenological picture of the realization of instability of a jet in the mode of branching jets is determined by a successive excitement of capillary waves with various symmetries. It has been shown that the viscosity of a liquid is of primary importance in the realization of the mode of branching jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Cloupeau, M. and Prunet Foch, B., J. Aerosol Sci., 1994, vol. 25, no. 6, pp. 1021–1035.

    Article  Google Scholar 

  2. Shiryaeva, S.O. and Grigor’ev, A.I., J. Electrostat., 1995, vol. 34, pp. 51–59.

    Article  Google Scholar 

  3. Jaworek, A. and Krupa, A., J. Aerosol Sci., 1999, vol. 30, no. 7, pp. 873–893.

    Article  Google Scholar 

  4. Chen, X., Jia, L., Yin, X., and Cheng, J., Phys. Fluids, 2005, vol. 17, no. 032101, pp. 1–7.

    Google Scholar 

  5. Kim, O.V. and Dunn, P.F., Langmuir, 2010, vol. 26, pp. 15807–15813.

    Article  Google Scholar 

  6. Kim, H.-G., Kim, H.-J., Lee, M.-H., and Kim, J.-H., Asian J. Atmos. Environ., 2014, vol. 8, no. 2, pp. 89–95.

    Google Scholar 

  7. Kim, H.H., Teramoto, Y., Negishi, N., Ogata, A., et al., J. Aerosol Sci., 2014, vol. 76, pp. 98–114.

    Article  Google Scholar 

  8. Pongrac, B., Kim, H.H., Janda, M., Martisovits, V., et al., J. Phys. D: Appl. Phys., 2014, vol. 47, p. 315202.

    Article  Google Scholar 

  9. Verdoold, S., Agostinho, L.L.F., Yurteri, C.U., and Marijnissen, J.C.M., J. Aerosol Sci., 2014, vol. 67, pp. 87–103.

    Article  Google Scholar 

  10. Park, I., Kim, S.B., Hong, W.S., and Kim, S.S., J. Aerosol Sci., 2015, vol. 89, pp. 26–30.

    Article  Google Scholar 

  11. Grigor’ev, A.I. and Shiryaeva, S.O., Elektron. Obrab. Mater., 2018, vol. 54, no. 2, pp. 23–27.

    Google Scholar 

  12. Grigor’ev, A.I., Tech. Phys., 2009, vol. 54, no. 4, pp. 482–490.

    Article  Google Scholar 

  13. Grigor’ev, A.I. and Shiryaeva, S.O., Surf. Eng. Appl. Electrochem., 2009, vol. 45, no. 6, pp. 465–470.

    Article  Google Scholar 

  14. Shiryaeva, S.O., Tech. Phys., 2011, vol. 56, no. 6, pp. 782–787.

    Article  Google Scholar 

  15. Tonks, L., Phys. Rev., 1935, vol. 48, pp. 562–568.

    Article  Google Scholar 

  16. Wilson, C.T. and Taylor, G.I., Proc. Cambridge Philos. Soc., 1925, vol. 22, no. 5, pp. 728–730.

    Article  Google Scholar 

  17. Zubarev, N.M., J. Exp. Theor. Phys. Lett., 2001, vol. 73, no. 10, pp. 544–548.

    Article  Google Scholar 

  18. Grigor’ev, A.I., Shiryaeva, S.O., Belonozhko, D.F., and Klimov, A.V., Elektron. Obrab. Mater., 2004, no. 4, pp. 34–40.

  19. Frenkel’, Ya.I., Zh. Eksp. Teor. Fiz., 1936, vol. 6, no. 4, pp. 348–350.

    Google Scholar 

  20. Taylor, G.I. and McEwan, A.D., J. Fluid Mech., 1965, vol. 22, no. 1, pp. 1–15.

    Article  Google Scholar 

  21. Ostroumov, G.A., Vzaimodeistvie elektricheskikh i gidrodinamicheskikh polei (Interaction of Electric and Hydrodynamic Fields), Moscow: Nauka, 1979.

  22. Entov, V.M. and Yarin, A.L., Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza, 1984, vol. 17, pp. 112–197.

    Google Scholar 

  23. Eggers, J., Rep. Prog. Phys., 2008, vol. 71, no. 36, pp. 1–79.

    Article  Google Scholar 

  24. Zhakin, A.I., Phys.-Usp., 2013, vol. 56, no. 2, pp. 141–163.

    Article  Google Scholar 

  25. Macky, W.A., Proc. R. Soc. London, Ser. A, 1931, vol. 133, no. 822, pp. 565–587.

    Article  Google Scholar 

  26. Taylor, G., Proc. R. Soc. London, Ser. A, 1969, vol. 313, pp. 453–470.

    Article  Google Scholar 

  27. Saville, D., Phys. Fluids, 1971, vol. 14, no. 6, pp. 1095–1099.

    Article  Google Scholar 

  28. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Washington, DC: U.S. Gov. Print. Off., 1972.

    MATH  Google Scholar 

  29. Grigor’ev, A.I., Shiryaeva, S.O., and Petrushkov, N.A., Tech. Phys., 2011, vol. 56, no. 2, pp. 171–177.

    Article  Google Scholar 

  30. Grigor’ev, A.I., Tech. Phys., 2001, vol. 46, no. 10, pp. 1205–1212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Grigor’ev.

Additional information

Translated by M. Baznat

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’ev, A.I., Shiryaeva, S.O. & Mikheev, G.E. On Regularities in the Realization of Electrostatic Instability of an Electroconducting Charged Jet Moving Relative to a Material Medium. Surf. Engin. Appl.Electrochem. 55, 268–273 (2019). https://doi.org/10.3103/S1068375519030086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375519030086

Keywords:

Navigation