Skip to main content
Log in

Comparative Anticorrosion Performance of Electrochemically Produced Zn–NiO and Zn–NiO–ZrO2 Composite Coatings on Mild Steel

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Zinc composite coatings of Zn–NiO and Zn–NiO–ZrO2 were produced by electrodeposition on mild steel using a Zn-sulphate bath. The homogeneous dispersion of the metal oxide nanoparticles for composite coating was achieved by magnetic stirring of the bath solution for about 6 h. The surface characteristics were examined by scanning electron microscopy supported by energy dispersive spectroscopy. The hydrophobic nature of the deposits has been determined by contact angle images of the deposits. The comparative corrosion resistive property of Zn, Zn–NiO and Zn–NiO–ZrO2 deposits was investigated by using a corrosion medium of 3.65% NaCl solution. The corrosion resistance performance of the coatings was analyzed by the Tafel polarization and electrochemical impedance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Fihri, A., Bovero, E., Al-Shahrani, A., Al-Ghamdi, A., and Alabedi, G., Colloids Surf., A, 2017, vol. 520, pp. 378–390.

    Article  Google Scholar 

  2. El Rayes, M.M., Abdo, H.S., and Khali, K.A., Int. J. Electrochem. Sci., 2013, vol. 8, no. 1, pp. 1117–1137.

    Google Scholar 

  3. Velázquez, J., van der Weide, J., Hernández, E., and Hernández, H.H., Int. J. Electrochem. Sci., 2014, vol. 9, pp. 4129–4143.

    Google Scholar 

  4. Boshkov, N., Tsvetkova, N., Petrov, P., Koleva, D., et al., Appl. Surf. Sci., 2008, vol. 254, pp. 5618–5625.

    Article  Google Scholar 

  5. Duong, N.T., Hang, T.T., Nicolay, A., Paint, Y., and Olivier, M.-G., Prog. Org. Coat., 2016, vol. 101, pp. 331–341.

    Article  Google Scholar 

  6. Sadegh, P.A., Dehghania, C., and Kosari, A., Corros. Sci., 2014, vol. 85, pp. 204–214. https://doi.org/10.1016/j.corsci.2014.04.018

    Article  Google Scholar 

  7. John, S., Joseph, A., Kuruvilla, M., and Sajini, T., J. Bio- Tribo-Corros., 2017, vol. 3, no. 1, pp. 1–9. https://doi.org/10.1007/s40735-016-0062-z

  8. Daniyan, A.A., Umoru, L.E., Popoola, A.P.I., and Fayomi, O.S.I., Results Phys., 2017, vol. 7, pp. 3222–3229.

    Article  Google Scholar 

  9. Punith Kumar, M.K., Pratap Singh, M. and Srivastava, C., RSC Adv., 2015, vol. 5, pp. 25603–25608.

    Article  Google Scholar 

  10. Yathish, U. and Chitharanjan Hegde, A., Surf. Eng. Appl. Electrochem., 2013, vol. 49, pp. 161–167.

    Article  Google Scholar 

  11. Chandrappa, K.G. and Venkatesha, T.V., J. Am. Ceram. Soc., 2012, vol. 95, pp. 2298–2306.

    Article  Google Scholar 

  12. Fayomi, O.S.I. and Popoola, A.P.I., Egypt. J. Basic Appl. Sci., 2014, vol. 1, pp. 120–125.

    Google Scholar 

  13. Roventi, G., Bellezze, T., and Fratesi, R., J. Appl. Electrochem., 2013, vol. 43, pp. 839–846.

    Article  Google Scholar 

  14. Fayomi, O.S.I., Aigbodion, V.S., and Popoola, A.P.I., J. Failure Anal. Prev., 2015, vol. 15, pp. 54–64.

    Article  Google Scholar 

  15. Mobin, M., Aslam, J., and Alam, R., J. Adhes. Sci. Technol., 2016, vol. 31, pp. 749–769.

    Article  Google Scholar 

  16. Vathsala, K., Venkatesha, T.V., Praveen, B.M., and Nayana, K.O., Engineering, 2010, vol. 2, pp. 580–584.

    Article  Google Scholar 

  17. Wang, Y., Lim, S., Luo, J.L., and Xu, Z.H., Wear, 2006, vol. 260, pp. 976–983.

    Article  Google Scholar 

  18. Vathsala, K. and Venkatesha, T.V., J. Solid State Electrochem., 2012, vol. 16, pp. 93–01.

    Article  Google Scholar 

  19. Vlasa, A., Varvara, S., Pop, A., Caius Bulea, C., et al., J. Appl. Electrochem., 2010, vol. 40, no. 8, pp. 1519–1527.

    Article  Google Scholar 

  20. Erten, Ü., İbrahim Ünal, H., Zor, S., and Hakan Atapek, Ş., J. Appl. Electrochem., 2015, vol. 45, no. 9, pp. 991–1003.

    Article  Google Scholar 

  21. Nemes, P.I., Lekka, M., Fedrizzi, L., and Muresan, L.M., Surf. Coat. Technol., 2014, vol. 252, pp. 102–107.

    Article  Google Scholar 

  22. Ammar, S., Ramesh, K., Vengadaesvaran, B., Ramesh, S., et al., J. Coat. Technol. Res., 2016, vol. 13, pp. 921–930.

    Article  Google Scholar 

  23. Praveen, B.M., Venkatesha, T.V., Arthoba Nayaka, Y., and Prashantha, K., Synth. React. Inorg. Met. Org. Chem., 2007, vol. 37, pp. 461–465.

    Article  Google Scholar 

  24. Bindiya, S., Basavanna, S., and Arthoba Naik, Y., J. Mater. Eng. Perform., 2012, vol. 21, pp. 1879–1884.

    Article  Google Scholar 

  25. Chandrappa, K.G., Venkatesha, T.V., Nayana, K.O., and Punithkumar, M.K., Mater. Corros., 2012, vol. 63, pp. 445–455.

    Article  Google Scholar 

  26. Vathsala, K. and Venkatesha, T.V., Appl. Surf. Sci., 2011, vol. 257, pp. 8929–8936.

    Article  Google Scholar 

  27. Yang, F., Liu, T., Li, J., Qiu, S., and Zhao, H., RSC Adv., 2018, vol. 8, pp. 13237–13247.

    Article  Google Scholar 

  28. Punith Kumar, M.K., Venkatesha, T.V., Pavithra, M.K., and Nithyananda Shetty, A., Synth. React. Inorg. Met. Org. Chem., 2012, vol. 42, pp. 1426–1434.

    Article  Google Scholar 

  29. Popoola, A.P.I., Aigbodion, V.S., and Fayomi, O.S.I., Surf. Coat. Technol., 2016, vol. 306, pp. 448–454.

    Article  Google Scholar 

  30. Fayomi, O.S.I., Popoola, A.P.I., and Daniyan, A.A., Part. Sci. Technol., 2016, vol. 35, pp. 418–425.

    Article  Google Scholar 

  31. Deepa, K. and Venkatesha, T.V., Mater. Today Proc., 2017, vol. 4, pp. 12045–12053.

    Article  Google Scholar 

  32. Hamdy, H.H., Abdelghani, E., and Mohammed, A.A., Electrochim. Acta, 2007, vol. 52, pp. 6359–6366.

    Article  Google Scholar 

  33. Ranganatha, S. and Venkatesha, T.V., RSC Adv., 2014, vol. 4, pp. 31230–31238.

    Article  Google Scholar 

  34. Mohammed, A.A., Khaled, K.F., and Fadl-Allah, S.A., Corros. Sci., 2010, vol. 52, pp. 140–151.

    Article  Google Scholar 

  35. Mohammed, A.A., J. Appl. Electrochem., 2006, vol. 36, pp. 215–226.

    Article  Google Scholar 

  36. Rosalbino, F., Scavino, G., Mortarino, G., Angelini, E., and Lunazzi, G., J. Solid State Electrochem., 2011, vol. 15, pp. 703–709.

    Article  Google Scholar 

  37. Madhan Kumar, A. and Gasem, Z.M., Prog. Org. Coat., 2015, vol. 78, pp. 387–394.

    Article  Google Scholar 

  38. Liu, S., Sun, H., Zhang, N., and Sun, L., Int. J. Corros., 2013, art. ID267353. https://doi.org/10.1155/2013/267353

Download references

ACKNOWLEDGMENTS

The authors thank the Department of Chemistry, Kuvempu University, Jnana Sahyadri, Karnataka, India, for providing lab facilities to finish the present work.

Funding

The authors acknowledge the support of UGC-New Delhi, Government of India, for providing UGC-BSR Fellowship (Order no. F, 25-1/2013-14(BSR) 7-229/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Venkatesha.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, K., Venkatesha, T.V. Comparative Anticorrosion Performance of Electrochemically Produced Zn–NiO and Zn–NiO–ZrO2 Composite Coatings on Mild Steel. Surf. Engin. Appl.Electrochem. 55, 317–323 (2019). https://doi.org/10.3103/S1068375519030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375519030050

Keywords:

Navigation