Synthesis and Characterization of Reduced Graphene Oxide- Polyaniline Composite for Supercapacitor Applications

  • Shruthi
  • K. M. Vighnesha
  • Sandhya
  • D. N. Sangeetha
  • M. SelvakumarEmail author


Graphene oxide (GO) is synthesized from commercially available graphite powder. The prepared GO is converted to reduced graphene oxide (rGO) by chemical reduction using sodium borohydride and sodium hydroxide. The rGO is characterized via X-ray diffraction, Raman spectroscopy and scanning electron microscopy. Conducting polymer–polyaniline, was prepared by oxidative polymerization in an electrolyte- hydrochloric acid and using ammonium persulphate as oxidant. The structure and doping of polyaniline were studied by Fourier-transform infrared spectroscopy and ultra-violet visible spectroscopy. To enhance the conductivity of the rGO, the conducting polymer mixed with rGO and rGO/Conducting polymer composites were prepared. The composite was characterized by cyclic voltammetry, AC impedance spectroscopy. A symmetrical supercapacitor (SC) has been fabricated based on rGO/PANI composites. The prepared composites were shown specific capacitance of 72 F g–1 at 2 mV s–1.


supercapacitors polyaniline electrical-double layer graphene reduced graphene oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, Y., Song, Y. and Xia, Y., Chem. Soc. Rev., 2016, vol. 45, pp. 5925–5950.CrossRefGoogle Scholar
  2. 2.
    Yang, W., Zhao, Y., He, X., Chen, Y., et al., Nanoscale Res. Lett., 2015, vol. 10, p. 222.CrossRefGoogle Scholar
  3. 3.
    Snook, G.A., Kao, P. and Best, A.S., J. Power Sources, 2011, vol. 196, pp. 1–2.CrossRefGoogle Scholar
  4. 4.
    Xu, Y., Lin, Z., Zhon, X., Huan, X., et al., Nat. Commun., 2004, vol. 5, p. 4554.CrossRefGoogle Scholar
  5. 5.
    Mei, X. and Ouyang, J., Carbon, 2011, vol. 49, pp. 5389–5397.CrossRefGoogle Scholar
  6. 6.
    Wu, X., Xu, Y., Yao, Z., Liu, A., et al., ACS Nano, 2010, vol. 4, pp. 1963–1970.CrossRefGoogle Scholar
  7. 7.
    Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S., Chem. Soc. Rev., 2010, vol. 39, p. 228.CrossRefGoogle Scholar
  8. 8.
    Chen, B., Sha, J., Li, W., He, F., et al., ACS Appl. Mater. Interfaces, 2006, vol. 8, pp. 2495–2504.CrossRefGoogle Scholar
  9. 9.
    Xu, B., Yue, S., Sui, Z., Zhang, X., et al., Energy Environ. Sci., 2011, vol. 4, pp. 2826–2830.CrossRefGoogle Scholar
  10. 10.
    Pei, S. and Cheng, H.M., Carbon, 2011, vol. 50, pp. 3210–3228.CrossRefGoogle Scholar
  11. 11.
    Khosrozadeh, A., Darabi, M. A., Xing, M., and Wang, Q., ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 11379–11389.CrossRefGoogle Scholar
  12. 12.
    Shi, Y., Peng, L., Ding, Y., Zhao, Y., et al., Chem. Soc. Rev., 2015, vol. 44, pp. 6684–6696.CrossRefGoogle Scholar
  13. 13.
    Daniela, C., Marcano, D., Kosynkin, V., Berlin, M.J., et al., ACS Nano, 2010, vol. 4, pp. 4806–4814.CrossRefGoogle Scholar
  14. 14.
    Zhao, J., Pei, S., Ren, W., Gao, L., et al., ACS Nano, 2010, vol. 4, pp. 5245–5252.CrossRefGoogle Scholar
  15. 15.
    Tian, J., Liu, S., Zhang, Y., Li, H., et al., Inorg. Chem., 2012, vol. 51, pp. 4742–4746.CrossRefGoogle Scholar
  16. 16.
    Li, R., Dong, X., He, C., Liu, Z., et al., Int. J. Electrochem. Sci., 2017, vol. 12, pp. 144–154.CrossRefGoogle Scholar
  17. 17.
    Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., et al., Nature, 2007, vol. 60, pp. 457–460.CrossRefGoogle Scholar
  18. 18.
    Chen, H., Müller, M.B., Gilmore, K.J., Wallace, G.G., et al., Adv. Mater., 2008, vol. 6, pp. 3557–3561.CrossRefGoogle Scholar
  19. 19.
    Hyder, M.N., Lee, S.W., Cebeci, F.C., Schmidt, D.J., et al., ACS Nano, 2011, vol. 5, pp. 8552–8561.CrossRefGoogle Scholar
  20. 20.
    Sudhakar, Y.N., Hemant, H., Nithinkumas, S.S., Poornesh, P., et al., Ionics, 2017, vol. 23, pp. 1267–1276.CrossRefGoogle Scholar
  21. 21.
    Nguyen, V.H., Lamiel, C., Kharismadewi, D., Tran, V.C., et al., J. Electroanal. Chem., 2015, vol. 758, pp. 148–155.CrossRefGoogle Scholar
  22. 22.
    Sun, Y., Wang, S., Li, C., Luo, P., et al., Phys. Chem., Chem. Phys., 2013, vol. 15, pp. 9907–9913.CrossRefGoogle Scholar
  23. 23.
    Lei, Z., Lu, L., and Zhao, X.S., Energy Environ. Sci., 2012, vol. 5, pp. 6391–6399.CrossRefGoogle Scholar
  24. 24.
    Dave, K., Park, K.H., and Dhayal, M., RSC Adv., 2015, vol. 5, pp. 95657–95665.CrossRefGoogle Scholar
  25. 25.
    Moon, I.K., Lee, J., Ruoff, R.S., and Lee, H., Nat. Commun., 2010, vol. 1, pp. 73–79.CrossRefGoogle Scholar
  26. 26.
    Kim, T.Y., Kang, H.C., Tung, T.T., Lee, J.D., et al., RSC Adv., 2012, vol. 2, pp. 8808–8812.CrossRefGoogle Scholar
  27. 27.
    Yu, Y., Zhihuai, S., Chen, S., Bian, C., et al., Langmuir, 2006, vol. 22, pp. 3899–3905.CrossRefGoogle Scholar
  28. 28.
    Vadiraj, K.T. and Belagali, S.L., IOSR J. Appl. Chem., 2015, vol. 8, pp. 53–56.CrossRefGoogle Scholar
  29. 29.
    Palanna, O.G., Engineering Chemistry, New Delhi: McGraw-Hill, 2002.Google Scholar
  30. 30.
    Shao, Y., Wang, J., Engelhard, M., Wang, C., et al., J. Mater. Chem., 2010, vol. 20, pp. 743–748.CrossRefGoogle Scholar
  31. 31.
    Subramanya, B. and Bhat, D.K., New J. Chem., 2015, vol. 39, pp. 420–430.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Shruthi
    • 1
  • K. M. Vighnesha
    • 1
  • Sandhya
    • 1
  • D. N. Sangeetha
    • 1
  • M. Selvakumar
    • 1
    Email author
  1. 1.Department of Chemistry, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia

Personalised recommendations