Reversible Polarization Recording in As2S3–Se Multilayer Nanostructures

  • A. Yu. MeshalkinEmail author


Polarization holographic recording of diffraction gratings and their subsequent erasure have been investigated on As2S3–Se multilayer nanostructures. The work investigates how preexposure to actinic laser radiation up to complete photoinduced changes in the optical properties affects the formation of diffraction gratings in the studied structure. It is shown that the preexposure of an As2S3–Se multilayer nanostructure (MNS) leads to photobleaching, and the maximum achievable diffraction efficiency (DE) of 35% does not change; however, the required exposure value is increased. It is also shown that exposure using one laser beam results in complete erasure of the diffraction grating recorded up to the maximum. Seven recording–erasure cycles show that the kinetics of the increase in diffraction efficiency and its maximum value do not change, which indicates that the As2S3–Se multilayer structure is capable of reversible holographic recording under orthogonal circular polarization. Study of the gratings recorded with an atomic-force microscope shows that the main factor determining the diffraction efficiency value is modulation of the relief, the depth of which is greater than 200 nm.


chalcogenide multilayer nanostructures reversible holographic recording direct surface relief formation diffraction efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Popescu, M., J. Optoelectron. Adv. Mater., 2005, vol. 7, pp. 2189–2210.Google Scholar
  2. 2.
    Andriesh, A.M., in Physics and Applications of Non-Crystalline Semiconductors in Optoelectronics, Andriesh, A. and Bertolotti, M., Eds., NATO Science Partnership Subseries no. 3, Dordrecht: Springer-Verlag, 1997, vol. 36, pp. 17–30.Google Scholar
  3. 3.
    Kolomiets, B.T., Lyubin, V.M., and Shilo, V.P., Fiz. Khim. Stekla, 1978, vol. 4, no. 3, pp. 351–357.Google Scholar
  4. 4.
    Indutnyi, I.Z., Stronski, A.V., Kostioukevitch, S.A., Schepeljavi, P.E., et al., Opt. Eng., 1995, vol. 34, no. 4, pp. 1030–1039.CrossRefGoogle Scholar
  5. 5.
    Saito, K., Utsugi, Y., and Yoshikawa, A., J. Appl. Phys., 1988, vol. 63, pp. 565–567.CrossRefGoogle Scholar
  6. 6.
    Stronski, A.V., Microelectronic Interconnections and Assembly, Dordrecht: Springer-Verlag, 1998, pp. 263–293.Google Scholar
  7. 7.
    Pan, W.J., Furniss, D., Rowe, H., Miller, C.A., et al., J. Non-Cryst. Solids, 2007, vol. 353, pp. 1302–1306.CrossRefGoogle Scholar
  8. 8.
    Mizushima, Y. and Yoshikava, A., Photoprocessing and lithographic applications, in Amorphous Semiconductor Technologies and Devices, Hamakava, Y., Ed., Tokyo: Ohmsha, 1982, pp. 277–295.Google Scholar
  9. 9.
    Zenkin, S.A., Mamedov, S.B., Mikhailov, M.D., Turkina, E.Yu., et al., Glass Phys. Chem., 1997, vol. 23, no. 5, pp. 393–399.Google Scholar
  10. 10.
    Zhdanov, V.G. and Malinovskii, V.K., Pis’ma Zh. Eksp. Teor. Fiz., 1977, vol. 3, no. 18, pp. 943–946.Google Scholar
  11. 11.
    Zhdanov, V.G., Kolomiets, B.T., Lyubin, V.M., and Malinovskii, V.K., Phys. Status Solidi A, 1979, vol. 52, pp. 621–626.CrossRefGoogle Scholar
  12. 12.
    Tanaka, K., Science, 1997, vol. 277, pp. 1786–1787.CrossRefGoogle Scholar
  13. 13.
    Kwak, C.H., Kim, J.T., and Lee, S.S., Opt. Lett., 1988, vol. 13, pp. 437–439.CrossRefGoogle Scholar
  14. 14.
    Ozols, A. and Reinfelde, M., J. Opt. A: Pure Appl. Opt., 2004, vol. 6, pp. S134–S141.Google Scholar
  15. 15.
    Saliminia, A., Galstian, T.V., and Villeneuve, A., Phys. Rev. Lett., 2000, vol. 85, pp. 4112–4115.CrossRefGoogle Scholar
  16. 16.
    Trunov, M.L., Lytvyn, P.M., Yannopoulos, S.N., Szabo, I.A., et al., Appl. Phys. Lett., 2011, vol. 99, art. ID 051906.Google Scholar
  17. 17.
    Trunov, M.L., Lytvyn, P.M., Nagy, P.M., and Dyachyns’ka, O.M., Appl. Phys. Lett., 2010, vol. 96, no. 11, art. ID 111908.Google Scholar
  18. 18.
    Gertners, U. and Teteris, J., Adv. Optoelectron., 2015, vol. 2015, art. ID 917029.Google Scholar
  19. 19.
    Kikineshi, A., J. Optoelectron. Adv. Mater., 2001, vol. 3, pp. 377–382.Google Scholar
  20. 20.
    Kikineshi, A., Palyok, V., Szabo, I.A., Shipljak, M., et al., J. Non-Cryst. Solids, 2003, vols. 326–327, pp. 484–488.Google Scholar
  21. 21.
    Achimova, E., Stronski, A., Abashkin, V., Meshalkin, A., et al., Opt. Mater., 2015, vol. 47, pp. 566–572.CrossRefGoogle Scholar
  22. 22.
    Achimova, E., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 5, pp. 456–468.CrossRefGoogle Scholar
  23. 23.
    Holomb, R., Mitsa, V., Petrachenkov, O., Veres, M., et al., Phys. Status Solidi C, 2011, vol. 8, pp. 2705–2708.CrossRefGoogle Scholar
  24. 24.
    Igo, T. and Toyshima, Y.A. J. Non-Cryst. Solids, 1973, vol. 11, pp. 304–308.CrossRefGoogle Scholar
  25. 25.
    Feinleib, J., de Neufville, J., Moss, S.C., and Ovshinsky, S.R., Appl. Phys. Lett., 1971, vol. 18, pp. 254–257.CrossRefGoogle Scholar
  26. 26.
    Crecmer, P., Moulin, A.M., Stephenson, R.J., Rayment, T., et al., Science, 1997, vol. 277, pp. 1799–1802.CrossRefGoogle Scholar
  27. 27.
    Gurevich, S.B., Ilyashenko, N.N., Kolomiets, B.T., and Lyubin, V.M., Zh. Tekh. Fiz., 1973, vol. 43, no. 1, pp. 217–219.Google Scholar
  28. 28.
    Palanjyan, K., Study of photoinduced anisotropy in chalcogenide Ge–As–S thin films, PhD Dissertation, Quebec, 2015. http://www.theses.ulaval. ca/2015/31836/31836.pdf.Google Scholar
  29. 29.
    Elliott, S.R. and Tikhomirov, V.K., J. Non-Cryst. Solids, 1996, vol. 198, pp. 669–674.CrossRefGoogle Scholar
  30. 30.
    Asatryan, K.E., Frederick, S., Galstian, T., and Vallee, R., Appl. Phys. Lett., 2004, vol. 84, pp. 1626–1628.CrossRefGoogle Scholar
  31. 31.
    Lyubin, V.M. and Tikhomirov, V.K., J. Non-Cryst. Solids, 1991, vol. 135, pp. 37–48.CrossRefGoogle Scholar
  32. 32.
    Kryshenik, V.M., Trunov, M.L., and Ivanitsky, V.P., J. Optoelectron. Adv. Mater., 2007, vol. 9, pp. 1949–1964.Google Scholar
  33. 33.
    Asatryan, K.E., Galstian, T., and Vallee, R., Phys. Rev. Lett., 2005, vol. 94, art. ID 087401.Google Scholar
  34. 34.
    Trunov, M.L., Lytvyn, P.M., and Dyachyns’ka, O.M., Appl. Phys. Lett., 2010, vol. 97, art. ID 031905.Google Scholar
  35. 35.
    Abaskin, V., Achimova, E., Meshalkin, A., Prisacar, A., et al., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 4, pp. 380–386.CrossRefGoogle Scholar
  36. 36.
    Stronski, A., Achimova, E., Paiuk, O., Meshalkin, A., et al., Nanoscale Res. Lett., 2016, vol. 11, no. 39, pp. 1–7.Google Scholar
  37. 37.
    Swanepoel, R., J. Phys. E: Sci. Instrum., 1983, vol. 16, pp. 1214–1222.CrossRefGoogle Scholar
  38. 38.
    Tauc, J., Grigorovici, R., and Vancu, A., Phys. Status Solidi B, 1966, vol. 15, pp. 627–637.CrossRefGoogle Scholar
  39. 39.
    Ganjoo, A. and Golovchak, R., J. Optoelectron. Adv. Mater., 2008, vol. 10, pp. 1328–1332.Google Scholar
  40. 40.
    Cai, L.Z. and Yang, X.L., Opt. Laser Technol., 2002, vol. 34, pp. 671–674.CrossRefGoogle Scholar
  41. 41.
    Adarsh, K.V., Sangunni, K.S., Shripathi, T., Kokenyesi, S., et al., J. Appl. Phys., 2006, vol. 99, art. ID 094301.Google Scholar
  42. 42.
    Goodman, J.W., Introduction to Fourier Optics, New York: McGraw-Hill, 1996, pp. 81–83.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Applied PhysicsChisinauRepublic of Moldova

Personalised recommendations