Skip to main content
Log in

Reversible Polarization Recording in As2S3–Se Multilayer Nanostructures

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Polarization holographic recording of diffraction gratings and their subsequent erasure have been investigated on As2S3–Se multilayer nanostructures. The work investigates how preexposure to actinic laser radiation up to complete photoinduced changes in the optical properties affects the formation of diffraction gratings in the studied structure. It is shown that the preexposure of an As2S3–Se multilayer nanostructure (MNS) leads to photobleaching, and the maximum achievable diffraction efficiency (DE) of 35% does not change; however, the required exposure value is increased. It is also shown that exposure using one laser beam results in complete erasure of the diffraction grating recorded up to the maximum. Seven recording–erasure cycles show that the kinetics of the increase in diffraction efficiency and its maximum value do not change, which indicates that the As2S3–Se multilayer structure is capable of reversible holographic recording under orthogonal circular polarization. Study of the gratings recorded with an atomic-force microscope shows that the main factor determining the diffraction efficiency value is modulation of the relief, the depth of which is greater than 200 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Popescu, M., J. Optoelectron. Adv. Mater., 2005, vol. 7, pp. 2189–2210.

    Google Scholar 

  2. Andriesh, A.M., in Physics and Applications of Non-Crystalline Semiconductors in Optoelectronics, Andriesh, A. and Bertolotti, M., Eds., NATO Science Partnership Subseries no. 3, Dordrecht: Springer-Verlag, 1997, vol. 36, pp. 17–30.

    Google Scholar 

  3. Kolomiets, B.T., Lyubin, V.M., and Shilo, V.P., Fiz. Khim. Stekla, 1978, vol. 4, no. 3, pp. 351–357.

    Google Scholar 

  4. Indutnyi, I.Z., Stronski, A.V., Kostioukevitch, S.A., Schepeljavi, P.E., et al., Opt. Eng., 1995, vol. 34, no. 4, pp. 1030–1039.

    Article  Google Scholar 

  5. Saito, K., Utsugi, Y., and Yoshikawa, A., J. Appl. Phys., 1988, vol. 63, pp. 565–567.

    Article  Google Scholar 

  6. Stronski, A.V., Microelectronic Interconnections and Assembly, Dordrecht: Springer-Verlag, 1998, pp. 263–293.

    Google Scholar 

  7. Pan, W.J., Furniss, D., Rowe, H., Miller, C.A., et al., J. Non-Cryst. Solids, 2007, vol. 353, pp. 1302–1306.

    Article  Google Scholar 

  8. Mizushima, Y. and Yoshikava, A., Photoprocessing and lithographic applications, in Amorphous Semiconductor Technologies and Devices, Hamakava, Y., Ed., Tokyo: Ohmsha, 1982, pp. 277–295.

    Google Scholar 

  9. Zenkin, S.A., Mamedov, S.B., Mikhailov, M.D., Turkina, E.Yu., et al., Glass Phys. Chem., 1997, vol. 23, no. 5, pp. 393–399.

    Google Scholar 

  10. Zhdanov, V.G. and Malinovskii, V.K., Pis’ma Zh. Eksp. Teor. Fiz., 1977, vol. 3, no. 18, pp. 943–946.

    Google Scholar 

  11. Zhdanov, V.G., Kolomiets, B.T., Lyubin, V.M., and Malinovskii, V.K., Phys. Status Solidi A, 1979, vol. 52, pp. 621–626.

    Article  Google Scholar 

  12. Tanaka, K., Science, 1997, vol. 277, pp. 1786–1787.

    Article  Google Scholar 

  13. Kwak, C.H., Kim, J.T., and Lee, S.S., Opt. Lett., 1988, vol. 13, pp. 437–439.

    Article  Google Scholar 

  14. Ozols, A. and Reinfelde, M., J. Opt. A: Pure Appl. Opt., 2004, vol. 6, pp. S134–S141.

    Google Scholar 

  15. Saliminia, A., Galstian, T.V., and Villeneuve, A., Phys. Rev. Lett., 2000, vol. 85, pp. 4112–4115.

    Article  Google Scholar 

  16. Trunov, M.L., Lytvyn, P.M., Yannopoulos, S.N., Szabo, I.A., et al., Appl. Phys. Lett., 2011, vol. 99, art. ID 051906.

    Google Scholar 

  17. Trunov, M.L., Lytvyn, P.M., Nagy, P.M., and Dyachyns’ka, O.M., Appl. Phys. Lett., 2010, vol. 96, no. 11, art. ID 111908.

    Google Scholar 

  18. Gertners, U. and Teteris, J., Adv. Optoelectron., 2015, vol. 2015, art. ID 917029.

    Google Scholar 

  19. Kikineshi, A., J. Optoelectron. Adv. Mater., 2001, vol. 3, pp. 377–382.

    Google Scholar 

  20. Kikineshi, A., Palyok, V., Szabo, I.A., Shipljak, M., et al., J. Non-Cryst. Solids, 2003, vols. 326–327, pp. 484–488.

    Google Scholar 

  21. Achimova, E., Stronski, A., Abashkin, V., Meshalkin, A., et al., Opt. Mater., 2015, vol. 47, pp. 566–572.

    Article  Google Scholar 

  22. Achimova, E., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 5, pp. 456–468.

    Article  Google Scholar 

  23. Holomb, R., Mitsa, V., Petrachenkov, O., Veres, M., et al., Phys. Status Solidi C, 2011, vol. 8, pp. 2705–2708.

    Article  Google Scholar 

  24. Igo, T. and Toyshima, Y.A. J. Non-Cryst. Solids, 1973, vol. 11, pp. 304–308.

    Article  Google Scholar 

  25. Feinleib, J., de Neufville, J., Moss, S.C., and Ovshinsky, S.R., Appl. Phys. Lett., 1971, vol. 18, pp. 254–257.

    Article  Google Scholar 

  26. Crecmer, P., Moulin, A.M., Stephenson, R.J., Rayment, T., et al., Science, 1997, vol. 277, pp. 1799–1802.

    Article  Google Scholar 

  27. Gurevich, S.B., Ilyashenko, N.N., Kolomiets, B.T., and Lyubin, V.M., Zh. Tekh. Fiz., 1973, vol. 43, no. 1, pp. 217–219.

    Google Scholar 

  28. Palanjyan, K., Study of photoinduced anisotropy in chalcogenide Ge–As–S thin films, PhD Dissertation, Quebec, 2015. http://www.theses.ulaval. ca/2015/31836/31836.pdf.

    Google Scholar 

  29. Elliott, S.R. and Tikhomirov, V.K., J. Non-Cryst. Solids, 1996, vol. 198, pp. 669–674.

    Article  Google Scholar 

  30. Asatryan, K.E., Frederick, S., Galstian, T., and Vallee, R., Appl. Phys. Lett., 2004, vol. 84, pp. 1626–1628.

    Article  Google Scholar 

  31. Lyubin, V.M. and Tikhomirov, V.K., J. Non-Cryst. Solids, 1991, vol. 135, pp. 37–48.

    Article  Google Scholar 

  32. Kryshenik, V.M., Trunov, M.L., and Ivanitsky, V.P., J. Optoelectron. Adv. Mater., 2007, vol. 9, pp. 1949–1964.

    Google Scholar 

  33. Asatryan, K.E., Galstian, T., and Vallee, R., Phys. Rev. Lett., 2005, vol. 94, art. ID 087401.

    Google Scholar 

  34. Trunov, M.L., Lytvyn, P.M., and Dyachyns’ka, O.M., Appl. Phys. Lett., 2010, vol. 97, art. ID 031905.

    Google Scholar 

  35. Abaskin, V., Achimova, E., Meshalkin, A., Prisacar, A., et al., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 4, pp. 380–386.

    Article  Google Scholar 

  36. Stronski, A., Achimova, E., Paiuk, O., Meshalkin, A., et al., Nanoscale Res. Lett., 2016, vol. 11, no. 39, pp. 1–7.

    Google Scholar 

  37. Swanepoel, R., J. Phys. E: Sci. Instrum., 1983, vol. 16, pp. 1214–1222.

    Article  Google Scholar 

  38. Tauc, J., Grigorovici, R., and Vancu, A., Phys. Status Solidi B, 1966, vol. 15, pp. 627–637.

    Article  Google Scholar 

  39. Ganjoo, A. and Golovchak, R., J. Optoelectron. Adv. Mater., 2008, vol. 10, pp. 1328–1332.

    Google Scholar 

  40. Cai, L.Z. and Yang, X.L., Opt. Laser Technol., 2002, vol. 34, pp. 671–674.

    Article  Google Scholar 

  41. Adarsh, K.V., Sangunni, K.S., Shripathi, T., Kokenyesi, S., et al., J. Appl. Phys., 2006, vol. 99, art. ID 094301.

    Google Scholar 

  42. Goodman, J.W., Introduction to Fourier Optics, New York: McGraw-Hill, 1996, pp. 81–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Meshalkin.

Additional information

Original Russian Text © A.Yu. Meshalkin, 2018, published in Elektronnaya Obrabotka Materialov, 2017, No. 6, pp. 97–104.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshalkin, A.Y. Reversible Polarization Recording in As2S3–Se Multilayer Nanostructures. Surf. Engin. Appl.Electrochem. 54, 407–414 (2018). https://doi.org/10.3103/S1068375518040129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375518040129

Keywords

Navigation